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ABSTRACT  
 
The Wide Area Augmentation System (WAAS) provides 
accuracy (95%) to better than 1m in horizontal and 2m in 
vertical, which is quite an improvement compared to the 
stand-alone GPS accuracy and well within the WAAS 
specification. However, WAAS was designed and 
optimized for integrity rather than accuracy.  Integrity 
requirements caused the selected carrier-smoothing time 

to be short and the weighting matrix for least-squares 
solutions to use overbounding variances.  These choices 
are suboptimal for accuracy/stability. Even though the 
WAAS accuracy/stability is not optimized, airborne users 
accept this trade-off because integrity is critically related 
to safety. But, if one wants to use the WAAS for ground 
navigation, the same integrity requirements may not be 
necessary. Therefore, one can improve the WAAS 
accuracy/stability by relaxing the strict integrity 
specifications.   
 
This paper investigates how to use the existing WAAS 
broadcast information to better optimize for accuracy and 
stability. First, we propose a new weighting matrix which 
appropriately represents the most likely signal conditions 
instead of using overbounding variances. Second, a 
method for dynamically adjusting the carrier smoothing 
time is investigated, which determines a right smoothing 
time based on the measurements of the rate of change of 
ionosphere. In addition to these methods, the Range Rate 
Correction (RRC) is removed, which is no longer 
necessary now that Selective Availability (SA) is 
permanently turned off. It has been observed that the RRC 
introduces noise with a 12 second period and15~30 cm 
amplitudes in position domain. Overall, we expect that 
these methods improve the WAAS accuracy/stability and 
open a new way of using the WAAS for accuracy-
oriented applications.   
 
INTRODUCTION 
 
When the Wide Area Augmentation System (WAAS) was 
designed, tremendous efforts were put into integrity 
because safety in using the WAAS for aviation must be 
guaranteed. The integrity required by the FAA is that the 
Vertical Protection Level (VPL) and the Horizontal 
Protection Level (HPL) must bound user position errors 
with the confidence of 99.99999%. Therefore, WAAS 
integrity equations are carefully constructed to ensure the 
integrity while satisfying more than 99.9% availability [1].     
 
In WAAS, HPL and VPL are computed by using the 
overbounding variances of the residual errors, such as 
User Differential Range Error (UDRE) and Grid 
Ionospheric Vertical Error (GIVE), after applying WAAS 
corrections. Users take and adjust these variances with 



their local position and combine them with the local 
receiver bounding variances to compute the VPL and the 
HPL as well as the weighting matrix which is used in 
computing position solutions [1]. This conservative way 
of computing integrity is essential for aviation users. 
However, if a user does not need to have such a high level 
of integrity in his/her application, there is a room for 
improvement in accuracy. In order to improve the WAAS 
accuracy for accuracy-oriented users, three methods are 
suggested in this paper: modifying the weighting matrix, 
adaptive carrier smoothing using code and carrier 
divergence (CCD) [2], and nullifying range rate 
correction (RRC). 
 
First, a new weighting matrix is used instead of the 
weighting matrix in the WAAS MOPS in which the 
variances used in computing the weighting matrix in the 
WAAS are bounding variances. Since this weighting 
matrix typically does not represent the most likely current 
signal conditions, it may cause some errors in position 
solutions by discarding good measurements. Therefore, 
by modifying the weighting matrix to better represent 
current signal conditions, it may be possible to obtain 
more stable position solutions than the standard WAAS. 
A new weighting matrix uses more realistic variances for 
UDRE and GIVE and does not include any degradation 
terms. 
 
Second, an adaptive carrier smoothing is proposed instead 
of using a fixed carrier smoothing time. This new method 
produces an optimal carrier smoothing time, which uses 
the code and carrier divergence (CCD) to estimate the 
ionospheric delay gradients and the level of noise 
including multipath and receiver noise [2]. Therefore, this 
method makes the carrier smoothing time robustly adapt 
to the current (10~15 min. time lag) ionospheric delay 
rate and noise level in order to result in smoother, more 
stable, and less biased position.      
 
Third, the Range Rate Correction (RRC) is turned off. 
The RRC was designed to overcome the Selective 
Availability (SA). Although SA is permanently turned off, 
RRC is still implemented and most of time causes a 12 
second periodic noise in position solutions [3]. Therefore, 
nullifying RRC will result in less noisy position than the 
WAAS without any harmful effects. 
 
The three methods, modifying the weighting matrix, 
adaptive carrier smoothing using CCD, and nullifying 
RRC, will be discussed in detail. These algorithms are 
tested with static GPS data and WAAS correction 
messages. The test results will be given and analyzed. 
Finally, our conclusions will be presented.    
 
MODIFYING WAAS WEIGHING MATRIX 
 

A WAAS receiver shall use a weighting matrix to 
compute position. This weighting matrix is closely related 
to the WAAS protection level equations which uses the 
variance of Gaussian model distribution overbounding a 
true error distribution. The weighting matrix is diagonal 
and consists of a total variance, 2

iσ , which is the sum of 
the four error variances  [4] 
  
 2 2 2 2 2

, , , ,i i flt i UIRE i air i tropoσ σ σ σ σ= + + +  (1) 
 
where 2

,i fltσ is the variance of fast and long term 

correction residuals, 2
,i UIREσ is the variance of ionospheric 

delay correction residuals, 2
,i airσ is the variance of 

airborne receiver errors, and 2
,i tropoσ is the variance of 

tropospheric error correction residuals.  
 
Using the total variances for each satellite, the weighting 
matrix is constructed as followings.  
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It will be ideal if the weighting matrix closely represents 
true error variance. However, this weighting matrix most 
of time does not represent the current true error variance 
because each variance must be exaggerated to protect 
against possible unobserved large errors, which is the 
philosophy of the WAAS. Therefore, if the tight WAAS 
integrity requirement is relaxed, the weighting matrix can 
be modified to better represent true error variance for an 
accuracy oriented user. The weighting matrix can be 
modified as following discussions. 
 
A.  Modifying the Variance of Fast and Long Term 
Correction Residuals, 2

fltσ . 
 
The variance of fast and long term correction residuals, 

2
,i fltσ , is computed as described in [4]. 
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where RSSUDRE is root-sum-square flag in Message Type 
10. UDREσ is the standard deviation of User Differential 
Range Error (UDRE) from Message Type 2-6 and 24. 

UDREδ is a location-specific modifier for UDREσ [5]. fcε , 

rrcε , ltcε and erε are the degradation parameters for fast 
correction data, range rate correction data, long term 
correction or GEO navigation message data, and en route 
through NPA (Non-precision approach) applications.  
 

UDREσ is evaluated from UDRE indicator (UDREIi ) 
provided from Message Type 2-6 and 24. The conversion 
table in the WAAS MOPS from the UDREI to UDREσ is 
shown in Table 1. In Table 1, a new UDRE variance table 
is also shown, which is obtained from the statistics of 
post-processed user differential range errors without 
ionospheric delays corresponding to each UDREI.  
Compared to the MOPS UDRE variance, the new UDRE 
variance is much smaller because it does not 
conservatively bound errors but rather is close to the true 
error variance.  
   
UDREI UDRE MOPS UDRE 

Variance(m2) 
New UDRE 

Variance (m2) 
0 0.75 0.0520 0.0260 
1 1.0 0.0924 0.0296 
2 1.25 0.1444 0.0332 
3 1.75 0.2830 0.0368 
4 2.25 0.4678 0.0404 
5 3.0 0.8315 0.0633 
6 3.75 1.2992 0.0892 
7 4.5 1.8709 0.1169 
8 5.25 2.5465 0.154 
9 6.0 3.3260 0.216 
10 7.5 5.1968 0.275 
11 15.0 20.787 0.512 
12 50.0 230.9661 0.600 
13 150.0 2078.695 5.40 
14 NM - - 
15 DNU - - 

Table 1: New evaluation of UDREI 
  
In addition to the new UDRE variances, 2

fltσ can be 
improved by ignoring the correction degradation 
variances which include fcε , rrcε , ltcε and erε because the 
fast and long term errors typically grow much slower than 
the degradation factors. UDREδ is set to unity because 
the ephemeris errors it is designed to protect against 
rarely occur. 
 
Designating the new UDRE variance as 2

_New UDREσ , the 
new variance of fast and long term correction residuals 
can be simplified as follows. 
 

 2 2
_ˆ ˆflt New UDREσ σ=  (4) 

 
B.  Modifying the Variance of User Ionospheric Range 
Error, 2

UIREσ .  
 
When WAAS-based ionospheric delay corrections are 
applied to a user, the variance of user ionospheric range 
error is computed as follows [4]. 
 
 2 2 2

UIRE pp UIVEFσ σ= i  (5) 
 
where ppF is the obliquity factor and 2

UIVEσ is the variance 
of User Ionospheric Vertical Error (UIVE).  
 
The WAAS MOPS states that the computation 
of 2

UIVEσ shall include the degradation of ionospheric 
corrections, ionoε . Again, this degradation factor is 
ignored since ionospheric delay correction typically 
degrade much slower than ionoε .  
 
Then, 2

UIVEσ can be computed as followings. 
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where W is a weighting factor which is a function of 
Ionosphere Piece Point (IPP). N is the number of 
Ionosphere Grid Point (IGP) used for the interpolation of 
ionosphere vertical delay at an IPP. 2

GIVEσ  is the variance 
of Grid Ionosphere Vertical Error (GIVE) and is 
evaluated from the Grid Ionosphere Vertical Error 
Indicator (GIVEI) sent by Message Type 26.  
 
Like UDREσ  , GIVEσ in the MOPS is very conservative. 
Table 2 compares the GIVE variance in the MOPS, 

2
GIVEσ , and the new GIVE variance, 2

_ˆNew GIVEσ .  
2

_ˆNew GIVEσ is again computed from the statistics of post-
processed residual Grid Ionospheric Vertical Error 
corresponding to each GIVEI. It better represents the 
residual errors most of time but can’t be used for the 
integrity that the WAAS requires. 
 

GIVEI GIVE MOPS 
Variance(m2) 

New  
Variance (m2) 

0 0.3 0.0084 0.0084 
1 0.6 0.0333 0.0136 
2 0.9 0.0749 0.0187 
3 1.20 0.1331 0.0210 
4 1.5 0.2079 0.0230 
5 1.8 0.2994 0.0255 



6 2.1 0.4075 0.0272 
7 2.4 0.5322 0.0289 
8 2.7 0.6735 0.0306 
9 3.0 0.8315 0.0323 
10 3.6 1.1974 0.0432 
11 4.5 1.8709 0.0675 
12 6 3.3260 0.110 
13 15 20.787 0.304 
14 45 187.0826 0.951 
15 NM - - 

Table 2: New evaluation of GIVEI 
 
Therefore, a new variance of user ionospheric range error 
is computed as follows. 
 
 2 2 2

_ˆ ˆUIRE pp New UIVEFσ σ= i  (7) 
where 
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C.  Modifying the Variance of Airborne Receiver 
Errors 
 
In [4], the variance of airborne receiver errors is 
computed as follows. 
 
 2 2 2 2[ ] [ ] [ ] [ ]air noise multipath divgi i i iσ σ σ σ= + +  (9) 
 
where  
 ( )( [ ]/10 )[ ] 0.13 0.53 in metersi

multipath i e θσ −= +
D

 (10) 
 

[ ]iθ is the elevation angle of i satellite in degrees. divgσ is 
defined as the difference between the induced error at the 
steady-state responses of a implemented carrier 
smoothing filter and the standard filter which uses 100s as 
a smoothing window. The difference shall be greater than 
zero if the implemented filter uses a different smoothing 
time. noiseσ is the standard deviation of a normal 
distribution which bounds the errors associated with a 
GNSS receiver noise such thermal noise.   
 

airσ bounds the remaining receiver noises and airborne 
multipath after the carrier smoothing. Not only airσ is 
very conservative, but it is designed for an airborne user. 
In this paper, this term is replaced by _ˆRN Mσ  computed 
based on the observation of ionospheric delay slope, 
receiver noise and multipath using code and carrier 
divergence (CCD). Carrier smoothing time also 
effects _ˆRN Mσ , therefore the detailed procedure in finding 

_ˆRN Mσ will be described in the below section.   
 

ADAPTIVE CARRIER SMOOTHING USING 
CODE-CARRIER DIVERGENCE (CCD) 
 
This section introduces a new way of determining a 
carrier smoothing time for a single frequency receiver 
proposed in [2]. The carrier smoothing time of the 
nominal filter defined in [4] is 100 seconds. This specific 
value is determined from considering the bounding rate of 
ionospheric delays during a nominal day. However, if 
ionospheric delay gradients and the level of multipath and 
receiver noise can be estimated, then a constant 
smoothing time does not need to be used. Instead, a 
smoothing time can adaptively change according to those 
estimates to obtain a better stability than a fixed carrier 
smoothing. This section summarizes how to determine an 
optimal carrier smoothing time based on the estimates of 
the rate of ionospheric delays, receiver noise and 
multipath using the code and carrier divergence (CCD). 
Then, the computation of _ˆRN Mσ will be shown.         
 
A. Estimation of Ionospheric Delay Gradients, 

Receiver Noise and Multipath Using CCD 
  

The basic measurements in a GPS receiver are code and 
carrier phase measurements. The code phase 
measurements, ρ , and the carrier phase measurements, 
Φ , can be written as 
 

[ ]

[ ]
u s

u s

r c t t I T M

r c t t I T N M
ρρ δ δ

δ δ Φ

= + − + + +

Φ = + − − + + +
 (11) 

  
where r is the true range between a receiver and a satellite. 
c is the speed of light. utδ and stδ are a receiver and 
satellite clock errors. I is ionospheric delay and T is 
tropospheric delay. N is the integer ambiguity. M ρ  
and MΦ  includes multipath, thermal noises, and modeling 
errors in the code and carrier phase measurements 
respectively.  
 
 The difference of code and phase measurements gives the 
following equation. 
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t t t
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I N M Mρ

ρ

Φ

= −Φ

= − + −
 (12) 

 
It should be noted that ionospheric delays slowly change 
with respect to time during nominal ionospheric days. 
Therefore, the gradients can be seen as a constant during a 
short time window (tens of minutes). The mean-
subtracted ty can be rewritten as 
 
 ,2t ty a t b M ρ= + +� i  (13) 
 



where a  is a rate of ionospheric delay. b  is an arbitrary 
constant. In equation (13), MΦ  is ignored because it is 
much smaller than M ρ which is zero-mean over time.  
 
Expressing the time series of equation (13) in a matrix 
form yields 
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Now, the problem becomes to find a in the presence of 
,tM ρ . If ,tM ρ is close to white nose, the ordinary least-

squares (OLS) is a right choice in estimating a . However, 
if ,tM ρ is highly correlated, the generalized least-squares 
(GLS) is recommended to be used [6] .  
 
The OLS solution of equation (14) is 
 
 1( ' ) 'OX T T T Y−=  (15) 
 
The GLS solution of equation (14) is 
 
 1 1 1( ' ) 'GX T T T Y− − −= Σ Σ  (16) 
 
where Σ is the covariance matrix of M .  
 
The generalized least square (GLS) requires covariance 
matrix of the noise to estimate GX . However, the 
covariance matrix is usually unknown. Therefore, it is 
necessary to estimate the covariance matrix and the GX  at 
the same time. This is well-known problem in 
econometrics and solved by using 2 step process [6]. This 
subject is not discussed in this paper, but a great deal of 
the procedure is discussed in [6] 
 
Figure 1 shows a typical pattern of ty�  with an estimated 
trend by using GLS. 
 
Once GX  is estimated, the receiver noise and multipath 
can be separated from ionospheric delays and an integer 
ambiguity as followings. 
  
 ˆ ˆ

GM Y TX= −�  (17) 
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Figure 1: Mean subtracted difference of code and carrier 

phase measurements 
 
B.  Determination of Optimal Carrier Smoothing Time 
 
Using the Hatch filter, the carrier-smoothed pseudorange 
at time t , tρ , is given by 

 
11

1 1( )k
t t t t tk kρ ρ ρ−

− −= + +Φ −Φ  (18) 
  
where k is a carrier smoothing time.  
 
The error, ε , in the smoothed pseudorange measurements 
can be described as [7] 
 
 [ ]t t u s t t tc t t I Tε ρ δ δ= − − − −  (19) 
 
If the ionospheric delay slope can be assumed to be 
constant, then the steady state error, ε , can be described 
as follows [2]. 
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From equation (20), it should be noted that the steady 
state error, ε , of the carrier smoothing filter is a function 
of the rate of ionospheric delays, receiver noise and 
multipath in the code phase measurements, and a carrier 
smoothing time. The trade-off of using the hatch filter is 
that the lager the carrier smoothing time, there is a bigger 
bias and lesser effects of multipath in ε .  
 
Based on ε , a cost function, which is only a function of 
the k , once a and M are estimated, can be expressed in 
two forms according to multipath characteristics: white 
noise and quasi sinusoidal wave. 
 
Equation (21) shows a proposed cost function, wJ , when 
multipath can be assumed to be white noise.  
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where σ is the standard deviation of WM and µ is a 
weighting factor. Equation (21) is the sum of the square 
of the first term and the variance of the second term in 
equation (20).  
 
On the other hand, when multipath is highly correlated or 
quasi sinusoidal, the following cost function is proposed.  
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where 1k

kφ −= .ω is the lowest distinct radial frequency 

component of SM which can be found by Fourier 
transform. The square root of the second term of sJ is the 
maximum value of the steady state response when 

, (2 ) cos( )
SS t MM wtσ= at time t .  This specific maximum 

value is chosen because it mostly bounds the steady state 
response of a quasi sinusoidal wave. Figure 2 shows the 
steady-state response of the given time series of multipath 
and receiver noise and its expected bound after carrier 
smoothing. The time series of multipath and receiver 
noise used in the figure are separated from CCD using the 
GLS procedure.  
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Figure 2: Expected bound to the stead-state response of 

quasi-sinusoidal multipath and noise  
 
An optimal carrier smoothing time, optk , can be 

computed, from the cost functions, wJ and sJ  with the 
tuning factor, µ . For example, Figure 3 shows the 

optk values computed from sJ with different levels of the 
rate of ionospheric delay and receiver noise and multipath 
when  2µ = and 0.04radω = . This value of ω  is 

chosen based on observations. The tuning factor µ used 
for Figure 3 is set to 2 so that the induced error is less 
than 2m with a noise amplitude up to 5m and an 
ionospheric delay rate up to 8 mm/s which bounds the rate 
of ionospheric delays during nominal days [7]. The 
corresponding cost optJ of optk is shown Figure 4. 
 

 
 

Figure 3: The optimal k for sinusoidal multipath given 
noise amplitude and ionospheric delay rate 

 
 
Figure 4: Induced error corresponding to the optimal k   

give noise amplitude and ionospheric delay rate 
 
Again, readers can found more rigorous discussion and 
derivation in [2]. 
 
After optk is chosen from minimizing wJ and sJ , 

_ˆRN Mσ can be obtained by substituting optk back to 

equation (21) and (22). _ˆ
WRN Mσ for white noise multipath 

is computed as follows.  
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_ˆ

SRN Mσ for sinusoidal multipath is computed as follows.  
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NULLYFYING RANGE RATE CORRECTION 
 
When WAAS was developed, the range rate correction, 
RRC, was designed to overcome Selective Availability 
(SA) which is now permanently turned off. However, 
WAAS receivers still apply RRC because it is required in 
[4]   
 
The range rate correction, RRC, is computed by a user as 
follows.  
 

 ( ) current previous
of

PRC PRC
RRC t

t
−

=
∆

 (25) 

 
where PRC is the fast corrections and tof  is the time of 
applicability. t∆ is the time difference between PRCcurrent 
and PRCprevious.  
 
RRC makes the pseudorange correction have periodic 
noise. This cyclic noise basically has a 12 second period, 
but this cyclic pattern is not always consistent. Figure 5 
shows the example of fast corrections with RRC frozen 
over time. 
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Figure 5: Behavior of RRC of PRN 9 and 22 

 
WAAS position solutions have the similar noise pattern as 
shown in Figure 6. Therefore, turning off the RRC result 
in better performance.  
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Figure 6: Effect of RRC in a position domain 

 
RESULTS 
 
The proposed methods are tested on the static data taken 
at Stanford University on September 6, 2006. The effect 
of the new weighting matrix will be discussed first, then 
how the three proposed methods improve the 
accuracy/stability of the WAAS will be shown.   
 
 A. Effect of the New Weighting Matrix  
 
Figures 7 and 8 compare the east and up position errors 
from the standard WAAS and the optimized WAAS with 
a new weighting matrix. Figures 9 and 10 show the total 
variances for the standard WAAS and the optimized 
WAAS. There are significant positioning improvements 
when the time is near 3000 seconds and around 6000 
seconds. The position from the optimized WAAS with the 
new weighting matrix shows better stability around these 
times. The variances in Figures 9 and 10 explain why the 
new weighting matrix results in better stability. The two 
of the total variances in Figure 9 are much larger than the 
rest of the variances near the 3000 seconds and the one 
variance is also larger than the rest around the 6000 
seconds. The satellites with these large variances are 
heavily de-weighted so that they are effectively excluded 
in computing position. On the other hand, the new total 
variances in Figure 10 show that the difference of these 
variances is not as extreme as the WAAS variances in 
Figure 9. Therefore, the satellites that have a large 
variance are relatively less de-weighted than the standard 
WAAS and help to obtain better position solutions.       
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Figure 7: Comparison of the position errors in east from 

the standard WAAS and the WAAS with a new weighting 
matrix  
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Figure 8: Comparison of the position errors in up from 

the standard WAAS and the WAAS with a new weighting 
matrix 
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Figure 9: Total variance from the standard WAAS 
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Figure 10: Total variance from the optimized WAAS 

 
B. Overall Improvements 
 
Figures 11 and 12 compare the position errors from the 
standard WAAS, optimized WAAS with 100s carrier 
smoothing time, and optimized WAAS with the adaptive 
carrier smoothing time. For adaptive carrier smoothing, a 
1000 seconds window of code minus carrier 
measurements and _ˆ

WRN Mσ are used. The two plots show 
that the optimized WAAS with adaptive carrier 
smoothing effectively reduce multipath without suffering 
a noticeable induced bias. Terminating RRC further 
reduces the noise. Overall the optimized WAAS with 
adaptive carrier smoothing produces significantly better 
stability than the standard WAAS and the optimized 
WAAS with 100s carrier smoothing.  
 

Figure 11: Comparison of the horizontal errors the 
standard WAAS and the Optimized WAAS with 100s and 



adaptive smoothing time  
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Figure 12: Comparison of the vertical errors the standard 
WAAS and the Optimized WAAS with 100s and adaptive 

smoothing time   
 
CONCLUSION 
 
The standard WAAS was optimized for accuracy and 
stability by applying a new more realistic weighting 
matrix, removing range rate correction (RRC), and using 
adaptive carrier smoothing. The results show that the 
proposed three methods significantly improve WAAS 
stability and slightly improve accuracy. The new 
weighting matrix produces more stable positions 
particularly when some satellites have significantly (50 to 
100 times) larger total variance than the others.  
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