

航空动力学报

中国航空学会主

首页 本刊介绍 编委会 投稿须知 审稿编辑流程 期刊征订 广告征订 English

选择皮肤:

Hide Expanded Menus

曾平君, 孙妹, 黄河峡, 杜沫辰, 陈伟, 谭慧俊, 李光胜. 直升机/粒子分离器一体化流场特性: 第一部分前进比的影响[J]. 航空动力学报, 2014, 29(4):858~866

直升机/粒子分离器一体化流场特性:第一部分前进比的影响

Integrated flow field characteristics of helicopter/particle separator: Part 1 influence of advance ratio

投稿时间: 2013-02-22

DOI: 10.13224/j.cnki.jasp.2014.04.016

中文关键词: 直升机 粒子分离器 一体化 前进比 流场特性

英文关键词:helicopter particle separator integration advance ratio flow field characteristics

基金项目:

作者 单位

 曾平君
 南京航空航天大学 民航/飞行学院,南京 210016

 孙姝
 南京航空航天大学 民航/飞行学院,南京 210016

 黄河峡
 南京航空航天大学 能源与动力学院,南京 210016

 杜沫辰
 南京航空航天大学 能源与动力学院,南京 210016

 陈伟
 南京航空航天大学 能源与动力学院,南京 210016

 谭慧俊
 南京航空航天大学 能源与动力学院,南京 210016

 李光胜
 南京航空航天大学 能源与动力学院,南京 210016

摘要点击次数: 36

全文下载次数: 47

中文摘要:

针对典型布局条件下直升机/粒子分离器的一体化流动特性进行了仿真研究.利用相关试验数据对仿真方法的有效性进行了检验,将整体式粒子分离器 安装至类"阿帕奇"直升机外型上,形成了一种典型直升机/粒子分离器布局方案,并分析了其在不同前进比下的一体化流场特性.结果表明.较高前进比下,在粒子分离器进口上游的齿轮箱外罩上出现了复杂的三维流动分离,使得粒子分离器在较不均匀的进口来流条件下工作.与独立粒子分离器状态相比,一体化条件下粒子分离器主流出口、扫气流出口的总压损失均有所加大,增幅分别为1%和8%.

英文摘要:

Integrated flow field characteristics of helicopter/particle separator of typical layout were studied by simulation method. Firstly, the validity of the numerical method used was verified by experimental data. Then, the integral particle separator was installed onto helicopter like "Apache", then a typical layout scheme of helicopter/particle separator was formed, and the integrated flow field characteristics in different advance ratios were analyzed. The study results show that under the condition of higher advance ratio, a complex three-dimensional flow separation appears in the gear box upstream the entrance of the integral particle separator. That is to say, the particle separator operates under the condition of nonuniform freestream. Moreover, compared with the independent particle separator, the total pressure loss of the particle separator under integrated condition at the mainstream exit and the scavenge exit both increased by 1% and 8%, respectively.