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This paper focuses on aerodynamic design methodology. It discusses challenges and
complexity of aerodynamic wing design for a transonic aircraft, which arise from the
complex nature of flow around the wing. It introduces the concept of automatic design
based on computational fluid dynamics (CFD) and the concept of adjoint method.
At the conceptual level, the adjoint method largely simplifies the complexity of the
design, yet makes the optimization process possible at the practical level. A redesign
for a shock-free wing is presented, showing the effectiveness of the automatic design.
An extension to include a large scale wing design such as planform optimization is also
presented. However, a new cost function needs to be properly chosen and the problem
actually leads to multi-objective optimization. Successful planform design results also
confirm the robustness of this automatic design strategy.

1.1 Introduction

Designing a good airplane is not trivial. The problem arises both from the com-
plexity of the flow over the airplane and from the need to treat complex multi-
disciplinary interactions such as the trade-off between aerodynamic performance
and structural weight. Flow past the airplane is governed by a system of highly
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non-linear equations, and for various problems such as viscous separated flows,
their solution is still beyond our reach.

In a relatively simple case, such as a wing in inviscid flow, flow prediction
can be performed fast enough that allows interactive calculations to improve
the design. However, it requires tremendous experience, even talent, from the
designer to achieve desired aerodynamic properties. To provide the necessary
guidance on how to change the shape if it is unsatisfactory, it is necessary to
integrate the predictive capability into an automatic design method, based on
computer optimization.

Another potential of the automatic design method is that it can lead to a truly
optimum design by increasing the number of design variations. Traditionally
the process of selecting design variations has been carried out by trial and error,
relying on the intuition and experience of the designer. With currently available
equipment the turn around for numerical simulations is becoming so rapid that
it is feasible to examine an extremely large number of variations. It is not at
all likely that repeated trials in an interactive design and analysis procedure
can lead to a truly optimum design. In order to take full advantage of the
possibility of examining a large design space the numerical simulations need to
be combined with automatic search and optimization procedures. This can lead
to automatic design methods which will fully realize the potential improvements
in aerodynamic efficiency.

This paper presents a design methodology for aerodynamic shape optimiza-
tion based on automatic design method. Section 1.2 discuses a traditional ap-
proach for optimization which becomes prohibitive when the number of design
variables increase. Section 1.3 states the optimization problem, which is gov-
erned by complex system of non-linear partial differential equations. Then it
introduces the control theory approach, leading to the simplicity in the concep-
tual level, yet efficiently reduces the computational cost. Results and extension
to multi-disciplinary optimization are demonstrated in section 1.4, validating
the concept of automatic design method.

1.2 Optimization and design

The simplest approach to optimization is to define the geometry through a set
of design parameters, which may, for example, be the weights αi applied to a
set of shape functions bi(x) so that the shape is represented as

f(x) =
∑

αibi(x).

Then a cost function I is selected which might, for example, be the drag coeffi-
cient at a final lift coefficient, and I is regarded as a function of the parameters
αi. The sensitivities ∂I

∂αi
may now be estimated by making a small variation δαi

in each design parameter in turn and recalculating the flow to obtain the change
in I . Then

∂I

∂αi

≈
I(αi + δαi) − I(αi)

δαi

.
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The gradient vector ∂I
∂α

may now be used to determine a direction of improve-
ment. The simplest procedure is to make a step in the negative gradient direction
by setting

αn+1 = αn − λ
∂I

∂α
,

so that to first order

I + δI = I −
∂IT

∂α
δα = I − λ

∂IT

∂α

∂I

∂α
.

More sophisticated search procedures may be used such as quasi-Newton meth-

ods, which attempt to estimate the second derivative ∂2I
∂αi∂αj

of the cost function

from changes in the gradient ∂I
∂α

in successive optimization steps. These methods
also generally introduce line searches to find the minimum in the search direc-
tion which is defined at each step. The main disadvantage of this approach is
the need for a number of flow calculations proportional to the number of design
variables to estimate the gradient. The computational costs can thus become
prohibitive as the number of design variables is increased. In drag minimiza-
tion problem, the design variables are location of points on the wing surface, in
which the number of points is regularly in an order of two thousand and the
computational time for one solution is about two to five minutes. Therefore,
the traditional way to calculate the gradient is not practical. In the next sec-
tion, we present the idea of Adjoint method, which dramatically reduces the
computational cost.

1.3 Application of control theory

A common problem in aerodynamic optimization is to minimize drag of the
airplane

I = CD =
1

q∞Sref

∫

B

pdSB, (1.1)

subject to the flow equations

∂w

∂t
+
∂fi

∂xi

= 0 in D, (1.2)

where the state vector w and inviscid flux vector f are described as
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, (1.3)

together with proper boundary conditions on SB. In these definitions, ρ is the
density, u1, u2, u3 are the Cartesian velocity components along the Cartesian
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coordinates (x1, x2, x3), E is the total energy, and δij is the Kronecker delta
function. The pressure is determined by the equation of state

p = (γ − 1) ρ

{

E −
1

2
(uiui)

}

,

and the stagnation enthalpy is given by

H = E +
p

ρ
,

where γ is the ratio of the specific heats.
Symbolically, equations (1.1) and (1.2) can be represented as a problem of

minimizing
I = I (w,S) , (1.4)

subject to
R (w,S) = 0. (1.5)

A change in S results in a change

δI =

[

∂IT

∂w

]

δw +

[

∂IT

∂S

]

δS, (1.6)

and δw is determined from the equation

δR =

[

∂R

∂w

]

δw +

[

∂R

∂S

]

δS = 0. (1.7)

Generally to completely represent a wing surface, the size of the design pa-
rameter S is in the order of two thousand. If we were to follow the traditional
way of calculating gradient described in section 1.2, it would require us to solve
equation (1.7) about two thousand times. Unfortunately, equation (1.7) is ex-
pensive to solve.

In oder to reduce the computational costs, it turns out that there are ad-
vantages in formulating the problems within the framework of the mathematical
theory for the control of systems governed by partial differential equations [10].
A wing, for example, is a device to produce lift by controlling the flow, and its
design can be regarded as a problem in the optimal control of the flow equations
by variation of the shape of the boundary.

Using techniques of control theory, the gradient can be determined indirectly
by solving an adjoint equation which has coefficients defined by the solution of
the flow equations. The cost of solving the adjoint equation is comparable to that
of solving the flow equations. Thus the gradient can be determined with roughly
the computational costs of two flow solutions, independently of the number of
design variables, which may be infinite if the boundary is regarded as a free
surface.

The underlying concepts are clarified by the following abstract description of
the adjoint method. Recall equations (1.6) and (1.7). Since the variation δR is
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zero, it can be multiplied by a Lagrange Multiplier ψ and subtracted from the
variation δI without changing the result. Thus equation (1.6) can be replaced
by

δI =
∂IT

∂w
δw +

∂IT

∂S
δS − ψ

T

([

∂R

∂w

]

δw +
[

∂R

∂S

]

δS

)

=

{

∂IT

∂w
− ψ

T

[

∂R

∂w

]

}

δw +

{

∂IT

∂S
− ψ

T

[

∂R

∂S

]

}

δS. (1.8)

Choosing ψ to satisfy the adjoint equation,

[

∂R

∂w

]T

ψ =
∂I

∂w
, (1.9)

the first term is eliminated, and we find that

δI = GδS, (1.10)

where

G =
∂IT

∂S
− ψT

[

∂R

∂S

]

.

The advantage is that equation (1.10) is independent of δw, with the result that
the gradient of I with respect to an arbitrary number of design variables can be
determined without the need for additional flow-field evaluations.

Note that equation (1.5) is a partial differential equation. Thus the adjoint
equation (1.9) is also a partial differential equation and determination of the
appropriate boundary conditions requires careful mathematical treatment. The
detailed derivation of the adjoint equations for compressible Euler and Navier-
Stokes equations can be found in [1, 2, 5, 4]

Once equation (1.10) is established, an improvement can be made with a
shape change

δS = −λG

where λ is positive, and small enough that the first variation is an accurate
estimate of δI . The variation in the cost function then becomes

δI = −λGT
G < 0.

After making such a modification, the gradient can be recalculated and the
process repeated to follow a path of steepest descent until a minimum is reached.
In order to avoid violating constraints, such as a minimum acceptable wing
thickness, the gradient may be projected into an allowable subspace within which
the constraints are satisfied. In this way, procedures can be devised which must
necessarily converge at least to a local minimum. It has been established by
our research that the descent process can be greatly accelerated by implicitly
smoothing the gradient so that it corresponds to the use of a Sobolev inner
product [3, 6].
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1.4 Case studies

1.4.1 Redesign for shock-free wing

We present a result to show that adjoint method can be used to efficiently
redesign the wing using low computational cost. The case chosen is the Boeing
747 wing-fuselage combination, which is considered a good design among existing
airplane. Flight condition is at Mach 0.87 and a lift coefficient CL = 0.42. At
this transonic speed, flow is very sensitive to small perturbation. If the wing
section is not designed properly, shock wave is likely to form, creating drag.

Redesigning to get a shock-free wing is very challenging due to nature of
highly sensitive flow. Even with an experienced designer, it is not likely that a
shock-free wing can be achieved by a trial-and-error process.

Here, we apply an idea of automatic design and use adjoint method to pro-
vide necessary optimization information. Figure 1.1 compares the baseline and
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Figure 1.1: Redesign of Boeing 747

the redesign calculations. Pressure distributions at five different span location
are shown; dash line for the baseline and solid line for the redesigned pressure
distributions. The kinks of the baseline Cp distribution indicate the presence of
shock waves. We allow section modification based on adjoint gradient to redesign
the sections. Within 17 design cycles, the re-designed sections have smooth Cp

distribution, indicating that all shock waves are eliminated. This also leads to
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a reduction in drag from 108 counts to 94 counts.

For the computational cost, the overall process takes about 20 minutes for 17
design cycles with 2016 mesh points as the design variables. This is only possible
with the application of adjoint method, together with fast flow and adjoint
solvers. Moreover, with the available of sufficient memory and fast processor
speed, the optimization can actually be performed on a laptop.

1.4.2 Planform and aero-structural optimization

The results from section 1.4.1 verify that the adjoint method has been perfected
for transonic wing design. The process produces a shock free wing very rapidly.

But for the purpose of drag minimization, shock drag is not the only compo-
nent of drag. Table 1.1 shows a break-down of the drag for a typical long-range
transport aircraft.

Item CD Cumulative CD

Wing pressure 120 counts 120 counts
(15 shock,105 vortex)

Wing friction 45 165
Fuselage 50 215

Tail 20 235
Nacelles 20 255

Other 15 270
—

Total 270

Table 1.1: Break down for drag in counts (1 count = 0.0001)

Clearly, the major portion of drag is vortex drag (roughly 45 % of total drag).
It is known that changes in the wing planform (sweepback, span, chord, section
thickness, and taper) have the potential to affect the vortex drag. However
these also directly affect the structural weight. Therefore, a meaningful result
can only be obtained by considering a cost function that accounts for both the
aerodynamic characteristics and the structural weight.

In references [7, 8, 9] the cost function is defined as

I = α1CD + α2

1

2

∫

B

(p− pd)
2dS + α3CW ,

where CW ≡ W
q∞Sref

is a dimensionless measure of the wing weight, which can

be estimated either from statistical formulas, or from a simple analysis of a
representative structure, allowing for failure modes such as panel buckling. The
coefficient α2 is introduced to provide the designer some control over the pressure
distribution, while the relative importance of drag and weight are represented
by the coefficients α1 and α3. They can also be chosen such that the range
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of the aircraft is maximized by considering the sensitivity of the Breguet range
equation

R =
V

sfc

L

D
log

W0 +Wf

W0

. (1.11)

to variations in L
D

and W0. Here V is the speed, L
D

is the lift to drag ratio,
sfc is the specific fuel consumption of the engines, W0 is the landing weight,
and Wf is the weight of the fuel burnt. By varying α1 and α3 it is possible to
calculate the Pareto front of designs which have the least weight for a given drag
coefficient, or the least drag coefficient for a given weight.

Figure 1.2 shows the Pareto front obtained from a study of the Boeing 747
wing [8], in which the flow was modeled by the Euler equations. The wing
planform and section were varied simultaneously, with the planform defined by
six parameters; sweepback, span, the chord at three span stations, and wing
thickness. It also shows the point on the Pareto front when α3

α1

is chosen such
that the range of the aircraft is maximized. The optimum wing, as illustrated
in figure 1.3, has a larger span, a lower sweep angle, and a thicker wing section
in the inboard part of the wing. The increase in span leads to a reduction in the
induced drag, while the section shape changes keep the shock drag low. At the
same time the lower sweep angle and thicker wing section reduce the structural
weight. Overall, the optimum wing improves both aerodynamic performance
and structural weight. The drag coefficient is reduced from 108 counts to 87
counts (19%), while the weight factor CW is reduced from 455 counts to 450
counts (1%).

1.5 Conclusion

The accumulated experience of the last decade suggests that most existing air-
craft which cruise at transonic speeds are amenable to a drag reduction of the
order of 3 to 5 percent, or an increase in the drag rise Mach number of at least
.02. These improvements can be achieved by very small shape modifications,
which are too subtle to allow their determination by trial and error methods.
The potential economic benefits are substantial, considering the fuel costs of the
entire airline fleet. Moreover, if one were to take full advantage of the increase
in the lift to drag ratio during the design process, a smaller aircraft could be
designed to perform the same task, with consequent further cost reductions. It
seems inevitable that some method of this type will provide a basis for aerody-
namic designs of the future.
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Figure 1.3: Superposition of the baseline (green) and the optimized section-and-
planform (blue) geometries of Boeing 747. The redesigned geometry has a longer
span, a lower sweep angle, and thicker wing sections, improving both aerodynamic and
structural performances. The optimization is performed at Mach .87 and fixed CL .42,
where α3

α1

is chosen to maximize the range of the aircraft.


