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High-order methods for unstructured grids provide a promising option for solving chal-
lenging problems in computational fluid dynamics. Flux reconstruction (FR) is a framework
which unifies a number of these high-order methods, such as the spectral difference (SD)
and collocation-based nodal discontinuous Galerkin (DG) methods, allowing for their more
concise and flexible implementation. Additionally, the FR approach can be used to facilitate
development of new numerical methods that offer arbitrary orders of accuracy on unstruc-
tured grids. In previous work, it has been shown that a particular range of FR schemes,
referred to as Vincent–Castonguay–Jameson–Huynh (VCJH) schemes, are guaranteed to
be stable for linear advection problems for all orders of accuracy. There have remained
questions, however, regarding the stability of FR schemes for advection–diffusion prob-
lems. In this study a new class of VCJH schemes is developed for solving one-dimensional
advection–diffusion problems. For the first time, it is shown that the schemes are linearly
stable for linear advection–diffusion problems for all orders of accuracy on nonuniform
grids. Linear and nonlinear numerical experiments are performed in 1D and 2D to investi-
gate the accuracy and stability properties of the new schemes. The results indicate that cer-
tain VCJH schemes for advection–diffusion problems possess significantly higher explicit
time-step limits than discontinuous Galerkin schemes, while still maintaining the expected
order of accuracy.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have seen significant interest in the development of high-order methods for solving conservation laws.
High-order methods produce less numerical dissipation relative to their lower order counterparts, allowing them to better
resolve temporally evolving physical features. For example, in the context of fluid dynamics, high-order methods are known
for their superior ability to preserve propagating vortex structures when simulating flows around rotorcraft, turbo-machin-
ery, and flapping wings [1]. In addition, high-order methods perform more efficiently on problems with low error tolerances
[2]. They have been successfully employed to simulate low-amplitude waves for applications in the areas of aeroacoustics
and magnetohydrodynamics [3]. However, despite their advantages, high-order methods have yet to be adopted by the
majority of fluid dynamicists. Instead, low order methods are more popular in industrial settings because they are more ro-
bust and easier to implement on the unstructured meshes which are frequently employed within complex geometries in
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practical applications. In order to remedy this situation, significant efforts have been devoted towards developing high order
methods that are well-suited for unstructured grids.

The discontinuous Galerkin (DG) methods are perhaps the most well-known amongst high-order methods for unstruc-
tured grids. Traditional DG methods [4] have been successfully applied to the treatment of nonlinear conservation laws
including the Euler and Navier–Stokes equations [5–7]. Recently, a nodal approach (referred to as collocation-based nodal
DG) has gained popularity [2]. This approach is easier to implement than the (aforementioned) traditional DG methods as
it is ‘quadrature free’ in the sense that it omits the explicit quadrature procedures associated with the traditional DG meth-
ods. In addition, the spectral difference (SD) approach, which was originally proposed in 1996 by Kopriva and Kolias [8], has
gained popularity as a quadrature free method. This method was generalized in 2006 by Liu, Vinokur, and Wang [9], and has
thereafter been successfully applied to a wide assortment of problems on unstructured grids [10–13].

Flux reconstruction (FR) emerged in 2007 as a single framework which encompasses a variety of collocation-based nodal
DG and SD approaches. Originally proposed by Huynh [14], FR is a unifying framework for high-order methods, capable of
recovering existing high-order schemes, and generating new schemes with favorable accuracy and stability properties. Using
this framework, Huynh has identified FR schemes for advection–diffusion problems in 1D, and in 2D on quadrilaterals [15]
and triangles [16]. In addition, Wang, Gao, Haga, and Yu have identified a closely related class of schemes referred to as Lift-
ing Collocation Penalty (LCP) schemes [17–21] which have recently been extended to handle viscous terms [22]. In 2011, due
to the similarity between the FR and LCP methods, the original developers of these methods decided to change their names
to Correction Procedure via Reconstruction (CPR) [23,24]. Various CPR schemes have been successfully applied to solve the
Navier–Stokes equations in 2D on triangular and quadrilateral elements [17] and in 3D on tetrahedral and prism elements
[20,25].

Despite the success of ‘FR-type’ schemes (i.e. FR and LCP schemes), there remain questions regarding their stability for
advection–diffusion problems. Thus far, efforts to prove the stability of the schemes have been incomplete. In particular,
in [14,15] Huynh employed Fourier analysis to prove the stability of certain FR schemes. However, this analysis was re-
stricted to uniform grids and a limited range for the order of accuracy. In response, a number of researchers have sought
to prove the stability of FR schemes for all orders of accuracy on arbitrary (nonuniform) grids. In particular, in 2010 Jameson
used an energy method to prove the stability of a particular SD scheme (an FR-type scheme) for 1D linear advection prob-
lems, for all orders of accuracy on nonuniform grids [26]. In numerical experiments, this ‘energy stable’ SD scheme was
shown to exhibit a larger CFL limit than the collocation-based nodal DG scheme [27]. More recently, Vincent, Castonguay,
and Jameson identified an entire class of FR schemes which they proved to be stable for linear advection problems in 1D
(again for all orders of accuracy on nonuniform grids) [28]. These schemes, referred to as Vincent–Castonguay–Jameson–
Huynh (VCJH) schemes [28], are parameterized by a single scalar c, and for particular choices of c, the SD scheme [26]
and a collocation-based nodal DG scheme can be obtained for linear problems in 1D.

In this work, a new class of VCJH schemes is developed for solving advection–diffusion problems. It will be shown that the
schemes are linearly stable on nonuniform grids for all orders of accuracy, thus demonstrating for the first time the stability
of a class of FR schemes for advection–diffusion problems.

The format of the paper is as follows. Section two presents a FR approach for solving advection–diffusion problems in 1D.
Section three introduces the VCJH correction functions. Section four develops a range of VCJH schemes for linear advection–
diffusion problems, and uses an energy method to prove that these schemes are stable for all orders of accuracy. Finally, sec-
tions five and six present results of 1D linear and 2D nonlinear numerical experiments, with the aim of assessing how well
the new VCJH schemes perform in practice.

2. Flux reconstruction approach for advection–diffusion problems

In this section, a new FR approach for advection–diffusion problems in 1D is presented. For readers unfamiliar with the FR
approach for advection problems, the authors recommend a review of the procedure described in [14,28]. For readers unfa-
miliar with the FR approach for diffusion problems, the authors recommend a review of the procedure described in [15,29].
For the sake of completeness, the following procedure is written for the general class of advection–diffusion problems. In
particular, the procedure presented here is applicable for general fluxes f ðu; @u

@xÞ and utilizes distinct flux and solution correc-
tion functions.

2.1. Preliminaries

Consider the 1D conservation law
@u
@t
þ @f
@x
¼ 0; ð1Þ
where x is the spatial coordinate, t is time, u ¼ uðx; tÞ is the conserved scalar quantity, and the flux f ¼ f u; @u
@x

� �
is a nonlinear

function of the solution u and its first spatial derivative. To eliminate terms involving second derivatives of the solution, Eq.
(1) can be rewritten as a first-order system, as follows
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@u
@t
þ @

@x
f ðu; qÞð Þ ¼ 0; ð2Þ

q� @u
@x
¼ 0: ð3Þ
This system includes a new variable q, henceforth referred to as the auxiliary variable.
The solution u ¼ uðx; tÞ to the system defined by Eqs. (2) and (3) evolves in space and time inside an arbitrary 1D spatial

domain X. Consider partitioning the domain X into N non-overlapping, conforming elements each denoted
Xn ¼ fxjxn < x < xnþ1g such that
X ¼
[N
n¼1

Xn: ð4Þ
In Eq. (2), the solution u within Xn is approximated by a function denoted by uD
n ¼ uD

n ðx; tÞ, which is a polynomial of degree p
inside Xn and is identically zero outside Xn. The approximate solution is designated with a superscript D to indicate that it is
discontinuous in the following sense: the sum of uD

n and uD
nþ1 is discontinuous at the boundary between neighbouring ele-

ments Xn and Xnþ1. The flux f in Eq. (2) can be approximated within each Xn by a function denoted fn ¼ fnðx; tÞ, which is
a polynomial of degree pþ 1 inside Xn and is identically zero outside the element. The sum of fn and fnþ1 is required to
be C0-continuous on Xn [Xnþ1.

Similar approximations can be introduced into Eq. (3). Here, the auxiliary variable q within each Xn is approximated by a
function qD

n ¼ qD
n ðx; tÞ, which is a polynomial of degree p within Xn and is identically zero outside the element. In general, the

sum of qD
n and qD

nþ1 is discontinuous at the boundary between the two elements. Also, in Eq. (3), the solution u within each Xn

is approximated by a function denoted un ¼ unðx; tÞ, where un is a polynomial of degree pþ 1 inside Xn and is identically zero
outside the element. Furthermore, the sum of un and unþ1 is required to be C0-continuous on Xn [Xnþ1 (i.e. un – uD

n ).
Following the introduction of these approximations, the first-order system in each element becomes
@uD
n

@t
þ @fn

@x
¼ 0; ð5Þ

qD
n �

@un

@x
¼ 0: ð6Þ
For convenience, Eqs. (5) and (6), which were originally formulated on the physical element Xn, can be transformed to the
reference element XS ¼ frj � 1 6 r 6 1g via the mapping
x ¼ HnðrÞ ¼
1� r

2

� �
xn þ

1þ r
2

� �
xnþ1: ð7Þ
The Jacobian of the mapping is abbreviated Jn and takes the form
Jn ¼
dHn

dr
¼ xnþ1 � xn

2
: ð8Þ
Applying this mapping to Eqs. (5) and (6), one obtains
@ûD

@t
þ @ f̂
@r
¼ 0; ð9Þ

q̂D � @û
@r
¼ 0; ð10Þ
where
ûD ¼ ûDðr; tÞ ¼ JnuD
n ðHnðrÞ; tÞ; ð11Þ

q̂D ¼ q̂Dðr; tÞ ¼ J2
n qD

n ðHnðrÞ; tÞ ð12Þ
are polynomials of degree p, and
f̂ ¼ f̂ ðr; tÞ ¼ fnðHnðrÞ; tÞ; ð13Þ
û ¼ ûðr; tÞ ¼ JnunðHnðrÞ; tÞ ð14Þ
are polynomials of degree pþ 1. The evolution of uD
n within any individual Xn can be determined by solving the system of

transformed equations (Eqs. (9) and (10)) within the standard element XS.

2.2. Procedure

The FR procedure for solving advection–diffusion problems of the form defined by Eqs. (9) and (10) consists of seven
stages. Note that, in practice several of these stages can be combined, however, in what follows they will be presented as
separate stages for the sake of clarity.
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The first stage defines a form for ûD within the standard element XS. Towards this end, it is assumed that values of the
transformed solution ûD

i ¼ ûD
i ðtÞ are known at a set of pþ 1 solution points (i ¼ 0 to p) inside XS, with each point located at a

distinct position ri. For each solution point i, a Lagrange polynomial li ¼ liðrÞ of degree p can be defined as follows
li ¼
Yp

j¼0;j–i

r � rj

ri � rj

� �
: ð15Þ
The polynomials and the discrete solution values can be used to construct the following expression for ûD
ûD ¼
Xp

i¼0

ûD
i li: ð16Þ
The second stage involves calculating a common value of the approximate solution at either end of the standard element XS

(at r ¼ �1). To compute this common solution value, one must first use Eq. (16) to obtain values for the approximate trans-
formed discontinuous solution at both ends of the standard element (where these values are denoted ûD

L ¼ ûDð�1; tÞ and
ûD

R ¼ ûDð1; tÞ). Once these values have been obtained, they can be used in conjunction with analogous information from
adjoining elements to calculate the common solution values at each interface. Let uI

e denote the common solution value com-
puted at interface e located between neighboring elements Xn and Xnþ1, and let uD

e;� and uD
e;þ denote the approximate dis-

continuous solution on the left and right of interface e, respectively. There are a number of approaches for determining
the common solution values at the interfaces, including the Central Flux (CF) [2], local discontinuous Galerkin (LDG) [30],
Compact Discontinuous Galerkin (CDG) [31], Interior Penalty (IP) [32], Bassi Rebay 1 (BR1) [6], and Bassi Rebay 2 (BR2)
[33] approaches. The LDG approach is of particular interest because it is identical to the CDG approach in 1D, and recovers
the BR1 and CF approaches in 1D and in higher dimensions. If one chooses to employ the LDG approach, the common solu-
tion value uI

e is computed as
uI
e ¼ ffuD

e gg � bsuD
e t; ð17Þ
where the average ff�gg and jump s � t operators are defined such that
ffuD
e gg ¼

uD
e;� þ uD

e;þ

2
ð18Þ
and
suD
e t ¼ uD

e;� � uD
e;þ ð19Þ
and where b is a directional parameter which allows uI
e to assume a value that is biased in either the upwind or downwind

direction. Choosing b ¼ �0:5 ensures that the scheme has a compact stencil in 1D [2,30].
In what follows, the transformed common solution values associated with the left and right ends of the standard element

XS will be denoted by ûI
L and ûI

R, respectively.
The third stage involves constructing the transformed auxiliary variable q̂D from the transformed continuous solution

û ¼ ûðr; tÞ, where û is required to be a degree pþ 1 polynomial in XS that takes on the values of the transformed common
solutions ûI

L and ûI
R at the left and right ends of XS, respectively. The transformed continuous solution û is constructed by

adding a degree pþ 1 correction ûC ¼ ûCðr; tÞ (where the superscript ‘C’ stands for ‘correction’) to the transformed discontin-
uous solution ûD, such that their sum equals the transformed common solution at the element boundaries (r ¼ �1), yet fol-
lows (in some sense) the transformed discontinuous solution within the interior of XS. An expression for ûC satisfying these
requirements can be formulated by introducing ‘correction functions’. Specifically, throughout the element interior XS; ûC

takes the form
ûC ¼ ðûI
L � ûD

L ÞgL þ ðûI
R � ûD

R ÞgR; ð20Þ
where gL ¼ gLðrÞ and gR ¼ gRðrÞ are correction functions of degree pþ 1 that approximate zero (in some sense) within XS, as
well as satisfying
gLð�1Þ ¼ 1; gLð1Þ ¼ 0; ð21Þ

gRð�1Þ ¼ 0; gRð1Þ ¼ 1; ð22Þ
and, based on symmetry considerations
gLðrÞ ¼ gRð�rÞ: ð23Þ
The exact form of gL and gR will be discussed in the next section. Using Eq. (20), a degree pþ 1 transformed continuous solu-
tion û ¼ ûðr; tÞ within XS can be constructed from the discontinuous solution and the solution correction as follows
û ¼ ûD þ ûC ¼ ûD þ ðûI
L � ûD

L ÞgL þ ðûI
R � ûD

R ÞgR: ð24Þ
Next, an expression for the transformed auxiliary variable q̂D can be obtained by substituting Eq. (24) into Eq. (10) as follows
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q̂D ¼ @û
@r
¼ @ûD

@r
þ ðûI

L � ûD
L Þ

dgL

dr
þ ðûI

R � ûD
R Þ

dgR

dr
: ð25Þ
Furthermore, after replacing ûD with the definition from Eq. (16), one obtains
q̂D ¼
Xp

i¼0

ûD
i

dli

dr
þ ðûI

L � ûD
L Þ

dgL

dr
þ ðûI

R � ûD
R Þ

dgR

dr
: ð26Þ
The fourth stage involves representing the transformed discontinuous flux f̂ D ¼ f̂ Dðr; tÞ using a degree p polynomial within
XS. Towards this end, one first obtains values of the transformed discontinuous flux f̂ D

i ¼ f̂ D
i ðtÞ at each solution point ri using

the transformed discontinuous solution ûD
i and the transformed auxiliary variable q̂D

i , i.e. f̂ i ¼ f̂ ðûD
i ; q̂

D
i Þ. Based on these flux

values, f̂ D within XS is formed as
f̂ D ¼
Xp

i¼0

f̂ D
i li: ð27Þ
The flux f̂ D is termed discontinuous since it is calculated from the transformed solution and the transformed auxiliary var-
iable, both of which are (in general) discontinuous at element boundaries.

The fifth stage involves calculating transformed numerical fluxes at either end of the standard element XS. This is done by
first obtaining values for the approximate transformed discontinuous solution ûD and the transformed auxiliary variable q̂D

at both ends of the standard element via Eqs. (16) and (26), respectively. By transforming these values to physical space, one
obtains uD

L ;u
D
R ; q

D
L , and qD

R . Once these values have been computed, they can be used in conjunction with analogous informa-
tion from adjoining elements to calculate transformed numerical interface fluxes. Let f I

e denote the numerical flux computed
at interface e located between neighboring elements Xn and Xnþ1. The numerical interface flux f I

e must be constructed from
two separate parts: an advective (inviscid) part f I

e;adv and a diffusive (viscous) part f I
e;dif , such that f I

e ¼ f I
e;adv þ f I

e;dif . Here f I
e;adv

depends on uD
e;� and uD

e;þ while f I
e;dif depends on uD

e;�;u
D
e;þ; q

D
e;�, and qD

e;þ. The exact methodology for calculating the numerical
fluxes f I

e;adv and f I
e;dif depends on the nature of the equations being solved. For example, when solving the linear advection–

diffusion equation, the advective interface flux f I
e;adv is often computed using a Lax–Friedrichs flux, while when solving the

Navier–Stokes equations, a Roe [34] or Rusanov [35] type approximate Riemann solver is often employed. The diffusive
interface flux f I

e;dif is typically obtained using one of the aforementioned CF, LDG, CDG, IP, BR1, or BR2 approaches. For exam-
ple, using the LDG approach, the numerical flux f I

e;dif takes the form
f I
e;dif ¼ fff D

e;dif gg þ ssuD
e tþ bsf D

e;dif t ¼
ðf D

e;dif ;� þ f D
e;dif ;þÞ

2
þ sðuD

e;� � uD
e;þÞ þ bðf D

e;dif ;� � f D
e;dif ;þÞ; ð28Þ
where f D
e;dif ;� ¼ fdif ðuD

e;�; q
D
e;�Þ; f D

e;dif ;þ ¼ fdif ðuD
e;þ; q

D
e;þÞ; s is a penalty parameter controlling the jump in the solution, and b is the

directional parameter (defined previously). Note that the parameter b in Eq. (28) is preceded by a þ sign and in Eq. (17) it is
preceded by a � sign. Opposite signs help ensure symmetry of the diffusive process in the following sense: if the common
solution uI

e is upwind biased then the numerical diffusive flux f I
e;dif is downwind biased and conversely if uI

e is downwind
biased then f I

e;dif is upwind biased.
In what follows, the transformed numerical interface fluxes at the left and right ends of the standard element XS will be

denoted by f̂ I
L and f̂ I

R.
The penultimate stage involves constructing a transformed degree pþ 1 total continuous flux f̂ ¼ f̂ ðr; tÞ in XS which takes

on the values of the transformed numerical interface fluxes f̂ I
L and f̂ I

R at the left and right ends of XS, respectively. To con-
struct f̂ , consider adding a degree pþ 1 transformed correction flux f̂ C ¼ f̂ Cðr; tÞ to the approximate transformed discontin-
uous flux f̂ D, such that their sum equals the transformed numerical interface flux at r ¼ �1. In order to define f̂ C such that it
satisfies the above requirements, consider introducing degree pþ 1 correction functions hL ¼ hLðrÞ and hR ¼ hRðrÞ, which are
analogous to gL and gR respectively, in the sense that they approximate zero within XS, as well as satisfying
hLð�1Þ ¼ 1; hLð1Þ ¼ 0; ð29Þ

hRð�1Þ ¼ 0; hRð1Þ ¼ 1 ð30Þ
and, based on symmetry considerations
hLðrÞ ¼ hRð�rÞ: ð31Þ
Now, a suitable expression for f̂ C can be written in terms of hL and hR as
f̂ C ¼ ðf̂ I
L � f̂ D

L ÞhL þ ðf̂ I
R � f̂ D

R ÞhR; ð32Þ
where the transformed discontinuous flux at either end of the element is denoted by f̂ D
L ¼ f̂ Dð�1; tÞ and f̂ D

R ¼ f̂ Dð1; tÞ. Using
Eq. (32), a degree pþ 1 total continuous transformed flux f̂ ¼ f̂ ðr; tÞwithin XS can be constructed from the discontinuous and
correction fluxes as follows
f̂ ¼ f̂ D þ f̂ C ¼ f̂ D þ ðf̂ I
L � f̂ D

L ÞhL þ ðf̂ I
R � f̂ D

R ÞhR: ð33Þ
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The final stage involves using the divergence of f̂ to update the transformed solution ûD
i at each solution point ri. The diver-

gence of f̂ at the point ri takes the form
@ f̂
@r
ðriÞ ¼

Xp

j¼0

f̂ D
j

dlj
dr
ðriÞ þ ðf̂ I

L � f̂ D
L Þ

dhL

dr
ðriÞ þ ðf̂ I

R � f̂ D
R Þ

dhR

dr
ðriÞ: ð34Þ
Once the divergence is obtained, it can be used to advance the transformed solution ûD in time via a suitable temporal dis-
cretization of the following semi-discrete expression
dûD
i

dt
¼ � @ f̂

@r
ðriÞ: ð35Þ
The nature of the FR procedure for advection–diffusion problems in 1D depends solely on five factors, namely:

1. The location of the solution points ri.
2. The methodology for calculating the transformed common solution values ûI

L and ûI
R (e.g. CF, LDG, CDG, IP, BR1 or BR2).

3. The methodology for calculating the transformed numerical interface fluxes f̂ I
L and f̂ I

R (e.g. a combination of Lax–Fried-
richs, Roe or Rusanov for the advective part and CF, LDG, CDG, IP, BR1 or BR2 for the diffusive part).

4. The form of the solution correction function gL (and thus by symmetry gR).
5. The form of the flux correction function hL (and thus by symmetry hR).

3. Vincent–Castonguay–Jameson–Huynh correction functions

For linear advection problems in 1D, Vincent et al. [28] recently identified a range of correction functions hL and hR for
correcting the flux, which lead to energy stable FR schemes for all orders of accuracy. These correction functions will hence-
forth be referred to as 1D VCJH correction functions. The 1D VCJH left and right corrections functions hL and hR are defined as
hL ¼
ð�1Þp

2
Wp �

gpWp�1 þWpþ1

1þ gp

 !" #
ð36Þ
and
hR ¼
1
2

Wp þ
gpWp�1 þWpþ1

1þ gp

 !" #
; ð37Þ
where
gp ¼
cð2pþ 1Þðapp!Þ2

2
; ap ¼

ð2pÞ!
2pðp!Þ2

; ð38Þ
Wp is a Legendre polynomial of degree p, and c is a free scalar parameter that must lie within the range
�2

ð2pþ 1Þðapp!Þ2
< c <1: ð39Þ
The correction functions obtained from Eqs. (36) and (37) lead to VCJH schemes which are an infinite family of FR schemes
parameterized by c. For the linear advection equation, it can be noted that several existing methods can be recovered from
the class of VCJH schemes. In particular if c ¼ cdg ¼ 0, then a collocation-based nodal DG scheme is recovered. Alternatively,
if c ¼ csd (where csd is defined in [28]), then the SD scheme that Jameson identified in [26] is recovered, and if c ¼ chu (where
chu is also defined in [28]), then the g2 FR method that Huynh identified in [14] is recovered. In addition, the analysis pre-
sented in [27] identifies a value of c denoted by cþ which gives an increased explicit time-step limit relative to cdg ; csd,
and chu while maintaining the expected order of accuracy.

Finally, note that stability of the VCJH schemes is ensured for linear advection problems in 1D when periodic boundary
conditions are imposed, because for these problems it can be shown that a Sobolev-type norm of the solution is non-increas-
ing, i.e.
d
dt
kUDk2

p;c 6 0; ð40Þ
where the norm is defined as
jjUDjjp;c ¼
XN

n¼1

Z xnþ1

xn

ðuD
n Þ

2 þ c
2
ðJnÞ

2p @puD
n

@xp

� �2
" #

dx

( )1=2

ð41Þ
and where UD is the total (domain-wide) solution defined as
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UD ¼
XN

n¼1

uD
n : ð42Þ
4. Proof of stability of VCJH schemes for the linear advection–diffusion equation

In this section, it is shown that if the correction functions gL; gR;hL, and hR are chosen to be VCJH correction functions, and
the common transformed solution values ûI

L and ûI
R and numerical flux values f̂ I

L and f̂ I
R are obtained appropriately, the result-

ing FR schemes are stable for the linear advection–diffusion equation in 1D. The contents of this section are an adaptation of
the work done by Castonguay in [36].

4.1. Preliminaries

The linear advection–diffusion equation in 1D takes the form
@u
@t
þ a

@u
@x
� b

@2u
@x2 ¼ 0; ð43Þ
where a and b are constant scalars (with b P 0). Consider rewriting Eq. (43) as follows
@u
@t
þ @f
@x
¼ 0; where f ¼ au� b

@u
@x
:

In the reference domain this becomes
@û
@t
þ @ f̂
@r
¼ 0; where f̂ ¼ âû� b̂

@û
@r
;

â ¼ a=Jn, and b̂ ¼ b=J2
n. The approximate transformed discontinuous flux f̂ D evaluated at the solution point ri is denoted by f̂ D

i

and is computed as
f̂ D
i ¼ âûD

i � b̂q̂D
i : ð44Þ
The evolution in time of the approximate transformed solution ûD at the solution point ri can be determined by combining
Eqs. (34), (35), and (44) to obtain
dûD
i

dt
¼ �â

Xp

j¼0

ûD
j

dlj
dr
ðriÞ þ b̂

Xp

j¼0

q̂D
j

dlj

dr
ðriÞ � ðf̂ I

L � âûD
L þ b̂q̂D

L Þ
dhL

dr
ðriÞ � ðf̂ I

R � âûD
R þ b̂q̂D

R Þ
dhR

dr
ðriÞ; ð45Þ
where ûD
L ¼ ûDð�1; tÞ; ûD

R ¼ ûDð1; tÞ; q̂D
L ¼ q̂Dð�1; tÞ, and q̂D

R ¼ q̂Dð1; tÞ.
On multiplying Eq. (45) by a Lagrange polynomial li, summing over i (from i ¼ 0 to p), and simplifying the result, one

obtains
@ûD

@t
¼ �â

@ûD

@r
þ b̂

@q̂D

@r
� ðf̂ I

L � âûD
L þ b̂q̂D

L Þ
dhL

dr
� ðf̂ I

R � âûD
R þ b̂q̂D

R Þ
dhR

dr
¼ � @ f̂ D

@r
� ðf̂ I

L � f̂ D
L Þ

dhL

dr
� ðf̂ I

R � f̂ D
R Þ

dhR

dr
: ð46Þ
Eq. (46) governs the temporal evolution of ûD within XS.

4.2. The stability of VCJH schemes

The stability of VCJH schemes for the linear advection–diffusion equation in 1D can be demonstrated by looking at the
evolution in time of the norm given by Eq. (41). For the linear advection–diffusion equation, the time rate of change of this
norm depends on contributions from the transformed solution ûD (i.e. Eq. (46)) and the transformed auxiliary variable q̂D (i.e.
Eq. (25)). The following lemmas identify key results associated with both equations and thereafter these results are used to
prove the stability of the VCJH schemes.

Lemma 4.1. For all FR schemes, Eq. (46) holds, and therefore the following results also hold
1
2

d
dt

Z 1

�1
ûD
� �2

dr ¼ �
Z 1

�1
ûD @ f̂ D

@r
dr � ðf̂ I

L � f̂ D
L Þ
Z 1

�1
ûD dhL

dr
dr � ðf̂ I

R � f̂ D
R Þ
Z 1

�1
ûD dhR

dr
dr ð47Þ
and
1
2

d
dt

Z 1

�1

@pûD

@rp

� �2

dr ¼ �2ðf̂ I
L � f̂ D

L Þ
@pûD

@rp

� �
dpþ1hL

drpþ1

 !
� 2ðf̂ I

R � f̂ D
R Þ

@pûD

@rp

� �
dpþ1hR

drpþ1

 !
: ð48Þ
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Proof. Consider multiplying Eq. (46) by ûD and integrating over the reference domain XS, to obtain
Z 1

�1
ûD @ûD

@t
dr ¼ �

Z 1

�1
ûD @ f̂ D

@r
dr � ðf̂ I

L � f̂ D
L Þ
Z 1

�1
ûD dhL

dr
dr � ðf̂ I

R � f̂ D
R Þ
Z 1

�1
ûD dhR

dr
dr; ð49Þ
from which Eq. (47) follows immediately.
On differentiating Eq. (46) p times (in space) one obtains
@

@t
@pûD

@rp

� �
¼ � @

pþ1 f̂ D

@rpþ1 � ðf̂
I
L � f̂ D

L Þ
dpþ1hL

drpþ1 � ðf̂
I
R � f̂ D

R Þ
dpþ1hR

drpþ1 ; ð50Þ
where f̂ D is a polynomials of degree p and @pþ1 f̂ D

@rpþ1 ¼ 0. On multiplying Eq. (50) by the pth derivative of the approximate trans-
formed solution ûD and integrating over XS, one obtains
Z 1

�1

@pûD

@rp

� �
@

@t
@pûD

@rp

� �
dr ¼ �ðf̂ I

L � f̂ D
L Þ
Z 1

�1

@pûD

@rp

� �
dpþ1hL

drpþ1

 !
dr � ðf̂ I

R � f̂ D
R Þ
Z 1

�1

@pûD

@rp

� �
dpþ1hR

drpþ1

 !
dr; ð51Þ
from which Eq. (48) follows immediately. This completes the proof of Lemma 4.1. h
Lemma 4.2. For all FR schemes, Eq. (25) holds, and therefore the following results also hold
Z 1

�1
q̂D
� �2

dr ¼
Z 1

�1
q̂D @ûD

@r
dr þ ðûI

L � ûD
L Þ
Z 1

�1
q̂D dgL

dr
dr þ ðûI

R � ûD
R Þ
Z 1

�1
q̂D dgR

dr
dr ð52Þ
and
 Z 1

�1

@pq̂D

@rp

� �2

dr ¼ 2ðûI
L � ûD

L Þ
@pq̂D

@rp

� �
dpþ1gL

drpþ1

 !
þ 2ðûI

R � ûD
R Þ

@pq̂D

@rp

� �
dpþ1gR

drpþ1

 !
: ð53Þ
Proof. Eq. (52) follows from multiplying Eq. (25) by q̂D and integrating over the reference domain XS. Eq. (53) follows from
differentiating Eq. (25) p times in space, observing that @pþ1 q̂D

@rpþ1 ¼ 0, multiplying by the pth derivative of q̂D, and integrating over
XS. This completes the proof of Lemma 4.2. h
Lemma 4.3. If hL;hR; gL, and gR are the VCJH correction functions, the following identity holds
1
2

d
dt

Z 1

�1
ûD
� �2 þ c

2
@pûD

@rp

� �2
" #

dr þ b̂
Z 1

�1
q̂D
� �2 þ j

2
@pq̂D

@rp

� �2
" #

dr

¼ �
Z 1

�1
ûD @ f̂ D

@r
dr þ b̂

Z 1

�1
q̂D @ûD

@r
dr þ ðf̂ I

L � f̂ D
L ÞûD

L � ðf̂ I
R � f̂ D

R ÞûD
R � b̂ ðûI

L � ûD
L Þq̂D

L þ b̂ ðûI
R � ûD

R Þq̂D
R ; ð54Þ
where c and j are constants which parameterize the VCJH correction functions hL (and thus hR) and gL (and thus gR), respectively,
and where in general it is assumed that c – j.
Proof. Upon multiplying Eq. (52) by b̂ and adding it to Eq. (47) one obtains
1
2

d
dt

Z 1

�1
ûD
� �2

dr þ b̂
Z 1

�1
q̂D
� �2

dr ¼ �
Z 1

�1
ûD @ f̂ D

@r
dr þ b̂

Z 1

�1
q̂D @ûD

@r
dr � ðf̂ I

L � f̂ D
L Þ
Z 1

�1
ûD dhL

dr
dr � ðf̂ I

R � f̂ D
R Þ
Z 1

�1
ûD dhR

dr
dr

þ b̂ ðûI
L � ûD

L Þ
Z 1

�1
q̂D dgL

dr
dr þ b̂ ðûI

R � ûD
R Þ
Z 1

�1
q̂D dgR

dr
dr: ð55Þ
Using integration by parts, the right hand side (RHS) can be rewritten as
1
2

d
dt

Z 1

�1
ûD
� �2

dr þ b̂
Z 1

�1
q̂D
� �2

dr ¼ �
Z 1

�1
ûD @ f̂ D

@r
dr þ b̂

Z 1

�1
q̂D @ûD

@r
dr � ðf̂ I

L � f̂ D
L Þ �

Z 1

�1
hL
@ûD

@r
dr � ûD

L

� �

� ðf̂ I
R � f̂ D

R Þ �
Z 1

�1
hR
@ûD

@r
dr þ ûD

R

� �
þ b̂ ðûI

L � ûD
L Þ �

Z 1

�1
gL
@q̂D

@r
dr � q̂D

L

� �

þ b̂ ðûI
R � ûD

R Þ �
Z 1

�1
gR
@q̂D

@r
dr þ q̂D

R

� �
: ð56Þ
Furthermore, on multiplying Eq. (48) by c and Eq. (53) by b̂j, and adding the result to Eq. (56), one obtains
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1
2

d
dt

Z 1

�1
ûD
� �2

dr þ c
4

d
dt

Z 1

�1

@pûD

@rp

� �2

dr þ b̂
Z 1

�1
q̂D
� �2

dr þ b̂j
2

Z 1

�1

@pq̂D

@rp

� �2

dr

¼ �
Z 1

�1
ûD @ f̂ D

@r
dr þ b̂

Z 1

�1
q̂D @ûD

@r
dr � ðf̂ I

L � f̂ D
L Þ �ûD

L �
Z 1

�1
hL
@ûD

@r
dr þ c

@pûD

@rp

� �
dpþ1hL

drpþ1

 !" #
� ðf̂ I

R

� f̂ D
R Þ ûD

R �
Z 1

�1
hR
@ûD

@r
dr þ c

@pûD

@rp

� �
dpþ1hR

drpþ1

 !" #
þ b̂ ðûI

L � ûD
L Þ �q̂D

L �
Z 1

�1
gL
@q̂D

@r
dr þ j

@pq̂D

@rp

� �
dpþ1gL

drpþ1

 !" #

þ b̂ ðûI
R � ûD

R Þ q̂D
R �

Z 1

�1
gR
@q̂D

@r
dr þ j

@pq̂D

@rp

� �
dpþ1gR

drpþ1

 !" #
: ð57Þ
Since hL;hR; gL, and gR are the VCJH correction functions, they satisfy the following identities (as shown in [28])
Z 1

�1
hL
@li

@r
dr � c

dpþ1hL

drpþ1

 !
@pli

@rp

� �
¼ 0;

Z 1

�1
hR
@li

@r
dr � c

dpþ1hR

drpþ1

 !
@pli
@rp

� �
¼ 0; ð58Þ

Z 1

�1
gL
@li

@r
dr � j

dpþ1gL

drpþ1

 !
@pli

@rp

� �
¼ 0;

Z 1

�1
gR
@li

@r
dr � j

dpþ1gR

drpþ1

 !
@pli
@rp

� �
¼ 0: ð59Þ
Eqs. (58) and (59) can be rewritten with ûD or q̂D in place of li as follows
�
Z 1

�1
hL
@ûD

@r
dr þ c

Z 1

�1

dpþ1hL

drpþ1

 !
@pûD

@rp

� �
dr ¼ 0; ð60Þ

�
Z 1

�1
hR
@ûD

@r
dr þ c

Z 1

�1

dpþ1hR

drpþ1

 !
@pûD

@rp

� �
dr ¼ 0; ð61Þ

�
Z 1

�1
gL
@q̂D

@r
dr þ j

Z 1

�1

dpþ1gL

drpþ1

 !
@pq̂D

@rp

� �
dr ¼ 0; ð62Þ

�
Z 1

�1
gR
@q̂D

@r
dr þ j

Z 1

�1

dpþ1gR

drpþ1

 !
@pq̂D

@rp

� �
dr ¼ 0; ð63Þ
where the fact that ûD and q̂D are polynomials of degree p and can be written as linear combinations of the Lagrange poly-
nomials li has been used. Eq. (54) follows immediately from substituting Eqs. (60)–(63) into Eq. (57). This completes the
proof of Lemma 4.3. h
Theorem 4.1. If VCJH schemes (for which Lemmas 4.1, 4.2 and 4.3 hold) are employed in conjunction with a Lax–Friedrichs for-
mulation for the advective numerical flux f I

adv , and the LDG formulation for the common solution uI and diffusive numerical flux f I
dif ,

then the following result holds
d
dt
kUDk2

p;c 6 0: ð64Þ
Proof. Eq. (54) (the result of Lemma 4.3) can be reformulated based on the identities
Z 1

�1
ûD @q̂D

@r
dr þ

Z 1

�1
q̂D @ûD

@r
dr ¼

Z 1

�1

@ðûDq̂DÞ
@r

dr ¼ ûD
R q̂D

R � ûD
L q̂D

L ; ð65Þ

Z 1

�1
ûD @ûD

@r
dr ¼ 1

2
ðûD

R Þ
2 � ðûD

L Þ
2

h i
ð66Þ
and the definition of the transformed discontinuous flux f̂ D ¼ âûD � b̂q̂D, yielding
1
2

d
dt

Z 1

�1
ûD
� �2 þ c

2
@pûD

@rp

� �2
" #

dr þ b̂
Z 1

�1
q̂D
� �2 þ j

2
@pq̂D

@rp

� �2
" #

dr

¼ � â
2
ðûD

R Þ
2 � ðûD

L Þ
2

� 	
þ b̂ ûD

R q̂D
R � ûD

L q̂D
L

� �
þ ðf̂ I

L � âûD
L þ b̂q̂D

L ÞûD
L � ðf̂ I

R � âûD
R þ b̂q̂D

R ÞûD
R � b̂ðûI

L � ûD
L Þq̂D

L þ b̂ðûI
R � ûD

R Þq̂D
R :

ð67Þ
Consider transforming Eq. (67) into physical space, in order to obtain
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1
2

d
dt

Z
Xn

uD
n

� �2 þ c
2

Jnð Þ
2p @puD

n

@xp

� �2
" #

dxþ b
Z

Xn

qD
n

� �2 þ j
2

Jnð Þ
2p @pqD

n

@xp

� �2
" #

dx

¼ � a
2
ðuD

R Þ
2 � ðuD

L Þ
2

� 	
þ b uD

R qD
R � uD

L qD
L

� �
þ ðf I

L � auD
L þ bqD

L ÞuD
L � ðf I

R � auD
R þ bqD

R ÞuD
R � bðuI

L � uD
L ÞqD

L þ bðuI
R � uD

R ÞqD
R

h i
n
:

ð68Þ
Now consider summing over all the elements, assuming a periodic domain, in order to obtain
1
2

d
dt
kUDk2

p;c ¼ �bkQ Dk2
p;j þ

XNe

e¼1

He; ð69Þ
where He is the contribution from interface e located between elements Xn and Xnþ1;Ne is the total number of edges, and
kUDkp;c ¼
XN

n¼1

Z xnþ1

xn

ðuD
n Þ

2 þ c
2
ðJnÞ

2p @puD
n

@xp

� �2
" #

dx

( )1=2

ð70Þ
and
kQ Dkp;j ¼
XN

n¼1

Z xnþ1

xn

ðqD
n Þ

2 þ j
2
ðJnÞ

2p @pqD
n

@xp

� �2
" #

dx

( )1=2

; ð71Þ
are both norms if the values of c and j lie in the range given by Eq. (39), as shown in [28]. From Eq. (68), He takes the form
He ¼
a
2
ðuD

e;�Þ
2 � a

2
ðuD

e;þÞ
2 þ buD

e;þqD
e;þ � buD

e;�qD
e;� þ f I

e uD
e;þ � uD

e;�

� 	
� buI

e qD
e;þ � qD

e;�

� 	
; ð72Þ
where the subscripts þ and � refer to quantities on the right and left of interface e respectively, f I
e is the common numerical

flux, and uI
e is the common solution, both of which are also associated with interface e. In general, the common numerical

flux f I
e is divided into two separate components f I

e ¼ f I
e;adv þ f I

e;dif , where f I
e;adv ¼ ðauÞIe and f I

e;dif ¼ �ðbqÞIe. In what follows, it will
be shown that if f I

e;adv is computed using a Lax–Friedrichs flux and if f I
e;dif is computed using the LDG approach, then He 6 0.

Using a Lax–Friedrichs flux, the common advective numerical flux is computed as
f I
e;adv ¼ ffauD

e gg þ
k
2
jajsuD

e t; ð73Þ
where k is an upwinding parameter such that 0 6 k 6 1. Note that k ¼ 0 recovers a central scheme while k ¼ 1 recovers a
fully upwind scheme. With the LDG approach, the common approximate solution uI

e and the common diffusive numerical
flux f I

e;dif are computed as
uI
e ¼ ffuD

e gg � bsuD
e t ð74Þ
and
f I
e;dif ¼ ff�bqD

e gg þ ssuD
e tþ bs� bqD

e t; ð75Þ
respectively, where b is a directional parameter and s is a penalty parameter. Note that for the choice b ¼ 0 and s ¼ 0, the
BR1 approach of Bassi and Rebay is recovered while for b – 0 and s ¼ 0, the CF approach is recovered.

For these choices of the common numerical fluxes and common approximate solution, the contribution from each
interface becomes
He ¼
a
2
ðuD

e;�Þ
2 � a

2
ðuD

e;þÞ
2 þ ffauD

e gg þ
k
2
jajsuD

e t

� �
uD

e;þ � ffauD
e gg þ

k
2
jajsuD

e t

� �
uD

e;�

þ ff�bqD
e gg þ ssuD

e tþ bs� bqD
e t

h i
uD

e;þ � ff�bqD
e gg þ ssuD

e tþ bs� bqD
e t

h i
uD

e;� � b ffuD
e gg � bsuD

e t

 �

qD
e;þ

þ buD
e;þqD

e;þ þ b ffuD
e gg � bsuD

e t

 �

qD
e;� � buD

e;�qD
e;�

¼ � k
2
jaj uD

e;þ � uD
e;�

� 	2
� sðuD

e;þ � uD
e;�Þ

2 ð76Þ
and Eq. (69) becomes
1
2

d
dt
kUDk2

p;c ¼ �bkQ Dk2
p;j �

XNe

e¼1

k
2
jaj uD

e;þ � uD
e;�

� 	2
þ sðuD

e;þ � uD
e;�Þ

2
� �

: ð77Þ
Since b P 0; k P 0, and s P 0, Eq. (64) immediately follows from Eq. (77). This completes the proof of Theorem 4.1. h
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Remark. Theorem 4.1 proves that the time rate of change of kUDk2
p;c is non-positive, hence the approximate solution UD is

bounded in the norm defined by Eq. (41), and hence in all norms via the equivalence of norms in a finite dimensional space.
This result guarantees stability of the VCJH schemes for the linear advection–diffusion equation in 1D. Stability of the
schemes has been established with no assumptions regarding the uniformity of the mesh, the order of the solution polyno-
mials p, or the position of the solution points.

In summary, Theorem 4.1 was obtained assuming that:

1. The correction functions hL;hR; gL, and gR are chosen to be the VCJH correction functions defined by Eqs. (36)–(39). This
guarantees that the identities in Eqs. (60)–(63) hold, and that the constants c and j are such that kUDkp;c and kQDkp;j are
norms.

2. The advective numerical flux is defined in accordance with a Lax–Friedrichs approach (Eq. (73)).
3. The common approximate solution and the diffusive numerical flux are defined in accordance with the LDG approach

(Eqs. (74) and (75), respectively).

Finally, note that although the stability proof has been constructed for the specific case in which a Lax–Friedrichs flux is
used for the advective numerical flux and the LDG approach is used for the common solution and diffusive numerical flux,
the proof still has broad applicability. The Lax–Friedrichs and LDG approaches are quite general because, as discussed
previously, the former recovers both the central and upwind approaches, and the latter recovers the CDG, BR1, and CF
approaches in 1D. It should be noted however that although stability was shown for arbitrary values of k in the range
0 6 k 6 1, using a value of k ¼ 0 is not advisable since for pure advection problems (b ¼ 0), VCJH schemes are at the limit of
stability.

5. One-dimensional linear numerical experiments

In this section, orders of accuracy and explicit time-step limits of VCJH schemes are examined via numerical experiments
on the 1D linear advection–diffusion equation.

Consider the 1D advection–diffusion of a scalar u ¼ uðx; tÞ governed by Eq. (43) with x 2 ½0;2p�, an initial condition
uðx; 0Þ ¼ sinðxÞ, and periodic boundary conditions. This problem has an analytical solution, ue ¼ expð�btÞ sinðx� atÞ.

Approximate solutions were obtained using the 1D VCJH schemes for advection–diffusion problems in conjunction with
an explicit, low-storage, 5 stage, 4th order Runge–Kutta scheme for time advancement (denoted RK54) [37], the Lax–Fried-
richs approach (with k ¼ 1) for the computation of the advective numerical fluxes, and the LDG approach for the computa-
tion of the common solution values and diffusive numerical fluxes. Numerical experiments were performed using different
values of c and j, which determine the correction functions, and different values of b and s, which determine the LDG
scheme. Values for these parameters were selected as follows.

� Choosing c and j: The four values of c discussed in Section 3 are known to possess favorable accuracy and stability prop-
erties for linear advection problems. These four values of c (c ¼ cdg ; c ¼ csd; c ¼ chu, and c ¼ cþ) were therefore chosen for
the experiments. For the explicit time-step limit study, four equivalent values of j
(j ¼ jdg ¼ cdg ;j ¼ jsd ¼ csd;j ¼ jhu ¼ chu, and j ¼ jþ ¼ cþ) were used. Table (1) shows numerical values of c and j,
for p ¼ 2 to 4. Note that the values of cþ and jþ in Table (1) are valid only for the RK54 time-stepping scheme, and
the reader is referred to [27] for values of cþ and jþ for other time-stepping schemes.
� Choosing b: For time-dependent diffusion problems, Cockburn and Shu [30] observed that a value of b – 0 is required for

preserving the order of accuracy of a DG scheme paired with an LDG-type flux. Thus, for all numerical experiments, a
value of b ¼ 0:5 was chosen. This value of b ensures the compactness of the scheme in 1D (as mentioned previously).
� Choosing s: For elliptic problems, Castillo et al. [38] demonstrated that choosing s � 1 preserves the accuracy and stabil-

ity of DG schemes. However, for time-dependent problems, Hesthaven and Warburton [2] demonstrated that accuracy
and stability can be obtained with s ¼ 0. Taking into account the results from references [38,2], experiments were per-
formed with both zero and nonzero values of s (s ¼ 0, 0.1, and 1).

5.1. Order of accuracy results

The spatial order of accuracy for each scheme was evaluated based on the L2 norm of the solution error (EðL2Þ) and the L2
semi-norm of the solution gradient error (EðL2sÞ), which were each computed as follows
Table 1
Reference values of c and j used in the 1D linear numerical experiments (taken from [27]).

p = 2 p = 3 p = 4

cdg ¼ jdg 0 0 0
csd ¼ jsd 2.96e�2 9.52e�4 1.61e�5
chu ¼ jhu 6.67e�2 1.69e�3 2.52e�5
cþ ¼ jþ 2.06e�1 3.80e�3 4.67e�5
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Fig. 1. Plots of the order of accuracy with which EðL2Þ and EðL2sÞ converge for VCJH schemes with c ¼ csd;b ¼ 0:5, and j 2 ½10�6;105�, on the model linear
advection–diffusion problem with a ¼ 0; b ¼ 1, and p ¼ 2 and p ¼ 3. Results for s ¼ 0, 0.1, and 1 are denoted by solid, dashed, and dot-dashed curves,
respectively. A vertical dashed line marks the location of j ¼ jþ ¼ cþ .
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EðL2Þ ¼
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vuut ; ð78Þ
where integrals over each element Xn were evaluated using a quadrature rule of sufficient strength. Note that EðL2Þ is ex-
pected to converge at a rate of hpþ1, and EðL2sÞ is expected to converge at a rate of hp [39], where h is the mesh spacing.

In the following, the order of accuracy was evaluated on uniform grids with N ¼ 32, 48, and 64 elements for cases in
which p ¼ 2 and p ¼ 3. In each case, the time-step was chosen sufficiently small to ensure that temporal errors were neg-
ligible relative to spatial errors. For each set of grids, a single, representative value for the order of accuracy was computed
using the slope of a linear least-squares fit of error vs. mesh spacing on a log scale. For each curve-fit, the correlation coef-
ficient exceeded 0.977.

Figs. (1) and (2) show the order of accuracy with which the solution and its gradient converge for schemes with j varying
in the range 10�6;105

h i
and fixed parameters: c ¼ csd; b ¼ 0:5, and s ¼ 0, 0.1, and 1. Experiments were performed for each of

the four values of c (cdg ; csd; chu, and cþ), however due to the similarity of these results, only the results for csd are shown.
Results are shown for a diffusion problem with a ¼ 0 and b ¼ 1 in Fig. (1), and an advection–diffusion problem with a ¼ 1

and b ¼ 1 in Fig. (2). For the diffusion problem, results for polynomial orders p ¼ 2 and p ¼ 3 are shown. For the advection–
diffusion problem, only results for p ¼ 3 are shown, as the results for p ¼ 2 demonstrate a similar trend.

Several conclusions can be drawn from these experiments. Firstly, the value of j has an important effect on the accuracy
of the scheme, and choosing a large value of j (defined as j� jþ) can result in a decrease in the order of accuracy. In con-
trast, for small and moderate values of j (defined as jKjþ), the order of accuracy is preserved (in both the solution and its
gradient) for all three values of s.

While j is the dominant factor affecting the order of accuracy of the 1D VCJH schemes, s determines when the
decrease in accuracy occurs. In particular, decreases in the order of accuracy occur at smaller values of j for cases with
larger values of s. Smaller values of s are preferred, and in some cases, choosing a smaller value for s will raise the order
of accuracy of the scheme (as demonstrated by the peaks in the order of accuracy plots in Fig. (1), for the diffusion prob-
lem with s ¼ 0).

More detailed conclusions regarding the affect of s on convergence rate are difficult to formulate, as the affect of s appears
to depend on the type of advection–diffusion problem. For example, if s ¼ 0 and j� jþ for the pure diffusion problem, the
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Fig. 2. Plots of the order of accuracy with which EðL2Þ and EðL2sÞ converge for VCJH schemes with c ¼ csd;b ¼ 0:5, and j 2 ½10�6;104�, on the model linear
advection–diffusion problem with a ¼ 1; b ¼ 1, and p ¼ 3. Results for s ¼ 0, 0.1, and 1 are denoted by solid, dashed, and dot-dashed curves, respectively. A
vertical dashed line marks the location of j ¼ jþ ¼ cþ .
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convergence rate decreases by two orders, whereas if s ¼ 0 and j� jþ for the advection–diffusion problem, the conver-
gence rate decreases by only one order. It is unclear precisely why this difference occurs. However, it is possible that pairing
s ¼ 0 with large values of j for the pure diffusion problem causes a larger reduction in convergence rate because s is a
penalty parameter that primarily effects the diffusive flux, and is therefore more likely to have a significant impact
(either positive or negative) on the pure diffusion problem. Further investigation is needed in order to determine the precise
effect of s.

In summary, these results suggest that the most effective 1D VCJH schemes can be formed by pairing the four values of c
(cdg ; csd; chu, and cþ) with small or moderate values of j (i.e. jKjþ), and small values of s (i.e. s � 0).

5.2. Explicit time-step limit results

The stability of explicit time integration schemes such as the RK54 scheme is governed by the Courant–Friedrichs–Lewy
(CFL) condition, which places an upper bound on the maximum allowable time-step. Thus, additional experiments were per-
formed in order to determine explicit time-steps limits associated with the VCJH schemes in 1D. For brevity, experiments
were only performed using schemes with c ¼ cdg ; c ¼ csd; c ¼ chu, or c ¼ cþ paired with j ¼ jdg ;j ¼ jsd;j ¼ jhu, or j ¼ jþ.
Note that these schemes have small or moderate values of j as recommended in the previous section.

For each scheme, the explicit time-step limit was determined using a bisection method to identify the largest time-step
that allowed the solution to remain bounded until t ¼ 1. This maximum time step was computed to an accuracy of at least
1e� 6. Tables 2–4 list the dimensionless time-step limit ( ~Dtmax), absolute errors in the solution and solution gradient, and
Table 2
VCJH scheme accuracy properties and explicit time-step limits for model linear advection–diffusion problem in 1D with a ¼ 0; b ¼ 1, and p ¼ 2. A value of
b ¼ 0:5 was used, and the time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid with N = 32 elements.

c j s ¼ 0 s ¼ 0:1

L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

cdg jdg 2.41e�05 3.00 1.26e�03 2.00 1.20e�03 2.41e�05 3.00 1.25e�03 2.00 1.20e�03
jsd 3.79e�05 3.00 1.68e�03 2.00 1.58e�03 3.76e�05 3.00 1.67e�03 2.00 1.58e�03
jhu 6.03e�05 3.00 2.30e�03 2.00 1.68e�03 5.96e�05 3.00 2.28e�03 2.00 1.68e�03
jþ 1.53e�04 3.00 4.84e�03 2.00 1.78e�03 1.49e�04 2.99 4.73e�03 1.99 1.78e�03

csd jdg 2.41e�05 3.00 1.26e�03 2.00 1.58e�03 2.41e�05 3.00 1.25e�03 2.00 1.58e�03
jsd 3.79e�05 3.00 1.68e�03 2.00 1.89e�03 3.76e�05 3.00 1.68e�03 2.00 1.89e�03
jhu 6.04e�05 3.00 2.30e�03 2.00 2.08e�03 5.97e�05 3.00 2.28e�03 2.00 2.08e�03
jþ 1.53e�04 3.00 4.85e�03 2.00 2.30e�03 1.49e�04 2.99 4.74e�03 1.99 2.30e�03

chu jdg 2.42e�05 3.00 1.26e�03 2.00 1.68e�03 2.41e�05 3.00 1.26e�03 2.00 1.67e�03
jsd 3.80e�05 3.00 1.69e�03 2.00 2.08e�03 3.78e�05 3.00 1.68e�03 2.00 2.08e�03
jhu 6.06e�05 3.00 2.31e�03 2.00 2.34e�03 5.99e�05 3.00 2.29e�03 2.00 2.33e�03
jþ 1.54e�04 3.00 4.86e�03 2.00 2.68e�03 1.50e�04 2.99 4.76e�03 1.99 2.67e�03

cþ jdg 2.53e�05 3.01 1.27e�03 2.00 1.78e�03 2.52e�05 3.01 1.27e�03 2.00 1.78e�03
jsd 3.91e�05 3.01 1.71e�03 2.00 2.30e�03 3.88e�05 3.01 1.70e�03 2.00 2.30e�03
jhu 6.18e�05 3.01 2.33e�03 2.00 2.68e�03 6.11e�05 3.00 2.31e�03 2.00 2.67e�03
jþ 1.56e�04 3.01 4.93e�03 2.01 3.24e�03 1.52e�04 3.00 4.83e�03 2.00 3.23e�03



Table 3
VCJH scheme accuracy properties and explicit time�step limits for model linear advection–diffusion problem in 1D with, a ¼ 0; b ¼ 1, and p ¼ 3. A value of
b ¼ 0:5 was used, and the time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid with N = 32 elements.

c j s ¼ 0 s ¼ 0:1

L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

cdg jdg 2.91e�07 4.00 2.35e�05 3.00 4.05e�04 2.90e�07 4.00 2.35e�05 3.00 4.05e�04
jsd 4.69e�07 4.00 3.45e�05 3.00 4.86e�04 4.67e�07 4.00 3.44e�05 3.00 4.85e�04
jhu 6.44e�07 4.00 4.40e�05 3.00 5.05e�04 6.39e�07 4.00 4.37e�05 3.00 5.05e�04
jþ 1.18e�06 4.00 7.22e�05 3.00 5.30e�04 1.17e�06 4.00 7.14e�05 3.00 5.30e�04

csd jdg 2.91e�07 4.00 2.35e�05 3.00 4.86e�04 2.90e�07 4.00 2.35e�05 3.00 4.85e�04
jsd 4.70e�07 4.00 3.46e�05 3.00 5.77e�04 4.67e�07 4.00 3.44e�05 3.00 5.76e�04
jhu 6.45e�07 4.00 4.40e�05 3.00 6.12e�04 6.40e�07 4.00 4.38e�05 3.00 6.11e�04
jþ 1.18e�06 4.00 7.22e�05 3.00 6.60e�04 1.17e�06 4.00 7.15e�05 3.00 6.59e�04

chu jdg 2.91e�07 4.00 2.35e�05 3.00 5.05e�04 2.91e�07 4.00 2.35e�05 3.00 5.05e�04
jsd 4.70e�07 4.00 3.46e�05 3.00 6.12e�04 4.68e�07 4.00 3.45e�05 3.00 6.11e�04
jhu 6.45e�07 4.00 4.40e�05 3.00 6.55e�04 6.40e�07 4.00 4.38e�05 3.00 6.54e�04
jþ 1.18e�06 4.00 7.23e�05 3.00 7.16e�04 1.17e�06 4.00 7.15e�05 3.00 7.14e�04

cþ jdg 2.93e�07 4.00 2.36e�05 3.00 5.30e�04 2.92e�07 4.00 2.35e�05 3.00 5.30e�04
jsd 4.72e�07 4.00 3.47e�05 3.00 6.60e�04 4.70e�07 4.00 3.45e�05 3.00 6.59e�04
jhu 6.48e�07 4.00 4.42e�05 3.00 7.15e�04 6.43e�07 4.00 4.39e�05 3.00 7.14e�04
jþ 1.19e�06 4.00 7.25e�05 3.00 7.97e�04 1.17e�06 4.00 7.17e�05 3.00 7.96e�04

Table 4
VCJH scheme accuracy properties and explicit time-step limits for model linear advection–diffusion problem in 1D with, a ¼ 1; b ¼ 1, and p ¼ 3. A value of
b ¼ 0:5 was used, and the time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid with N = 32 elements.

c j s ¼ 0 s ¼ 0:1

L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

cdg jdg 2.86e�07 3.99 2.31e�05 2.99 4.02e�04 2.86e�07 3.99 2.31e�05 2.99 4.01e�04
jsd 4.53e�07 3.99 3.36e�05 2.99 4.84e�04 4.51e�07 3.99 3.35e�05 2.99 4.83e�04
jhu 6.15e�07 3.98 4.25e�05 2.99 5.03e�04 6.11e�07 3.98 4.22e�05 2.99 5.03e�04
jþ 1.10e�06 3.97 6.81e�05 2.98 5.28e�04 1.09e�06 3.97 6.74e�05 2.98 5.28e�04

csd jdg 2.82e�07 3.99 2.29e�05 2.99 4.83e�04 2.82e�07 3.99 2.29e�05 2.99 4.83e�04
jsd 4.46e�07 3.98 3.32e�05 2.99 5.73e�04 4.44e�07 3.98 3.31e�05 2.98 5.72e�04
jhu 6.06e�07 3.98 4.20e�05 2.98 6.08e�04 6.02e�07 3.98 4.17e�05 2.98 6.08e�04
jþ 1.09e�06 3.97 6.73e�05 2.97 6.56e�04 1.07e�06 3.97 6.66e�05 2.97 6.55e�04

chu jdg 2.80e�07 3.99 2.27e�05 2.99 5.02e�04 2.79e�07 3.99 2.27e�05 2.99 5.02e�04
jsd 4.40e�07 3.98 3.29e�05 2.98 6.08e�04 4.38e�07 3.98 3.28e�05 2.98 6.07e�04
jhu 5.99e�07 3.97 4.16e�05 2.98 6.51e�04 5.95e�07 3.97 4.14e�05 2.98 6.50e�04
jþ 1.08e�06 3.97 6.67e�05 2.97 7.11e�04 1.06e�06 3.96 6.61e�05 2.97 7.10e�04

cþ jdg 2.74e�07 3.98 2.23e�05 2.98 5.27e�04 2.73e�07 3.98 2.22e�05 2.98 5.26e�04
jsd 4.26e�07 3.96 3.21e�05 2.97 6.54e�04 4.24e�07 3.96 3.20e�05 2.97 6.53e�04
jhu 5.80e�07 3.96 4.06e�05 2.97 7.10e�04 5.76e�07 3.96 4.03e�05 2.97 7.09e�04
jþ 1.05e�06 3.96 6.51e�05 2.96 7.90e�04 1.03e�06 3.95 6.45e�05 2.96 7.89e�04
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order of accuracy for each scheme. The time-step limit and absolute errors were obtained on the grid with N = 32 elements.
Results are presented for a value of b ¼ 0:5, and two values of s : s ¼ 0 and 0.1. Tables (2) and (3) present these results for the
diffusion problem (with p ¼ 2 and p ¼ 3), and Table (4) presents these results for the advection–diffusion problem (with p
= 3). The results for the diffusion problem and the advection–diffusion problem are similar, and thus limited results (only the
results for p ¼ 3) are shown for the advection–diffusion problem.

5.3. Summary of one-dimensional linear numerical experiments

For the diffusion problem, larger values of c and j yield larger values for the maximum time-step. Table (2) shows that for
p ¼ 2; s ¼ 0; c ¼ cþ, and j ¼ jþ, the maximum time-step is 2.7 times that of the maximum allowable time-step for a collo-
cation-based nodal DG scheme (with c ¼ 0 and j ¼ 0). Time-step improvements are also obtained for advection–diffusion
problems. In all cases, values of c > cdg paired with values of j > jdg consistently produce larger maximum time-steps (rel-
ative to a collocation-based nodal DG scheme). However, it should be noted that raising c and j also increases absolute errors
in both the solution and the solution gradient. Consequently, for schemes with c > cdg and j > jdg , finer meshes would be
required to achieve error levels associated with a collocation-based nodal DG scheme. These finer meshes would act to re-
duce the maximum allowable time-step, potentially offsetting any increases associated with raising c and j. Further studies
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are required to determine whether in practice, under the constraint of a fixed error tolerance, increasing c and j has an over-
all benefit in terms of increasing the maximum allowable time-step.

6. Two-dimensional nonlinear numerical experiments

In this section, numerical experiments were performed using the 2D Navier–Stokes equations to verify if the findings of
the previous section also hold for nonlinear problems in multiple dimensions. In 2D, the Navier–Stokes equations take the
form
@U
@t
þr � Finv Uð Þ � r � Fvisc U; rUð Þ ¼ 0; ð79Þ
where U represents the conservative variables, and Finv ¼ ðfinv ; ginvÞ and Fvisc ¼ ðfvisc; gviscÞ represent the inviscid and viscous
flux vectors, respectively. The conservative variables and the x and y components of the inviscid flux vector can be written as
follows
U ¼

q
qu

qv
E

8>>><
>>>:

9>>>=
>>>;
; f inv ¼

qu
qu2 þ p

quv
uðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
; ginv ¼

qv
quv

qv2 þ p

vðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
; ð80Þ
where q ¼ q x; y; tð Þ is the density, u ¼ u x; y; tð Þ and v ¼ v x; y; tð Þ are the x and y components of velocity, p ¼ p x; y; tð Þ is the
pressure, E ¼ p= c� 1ð Þ þ ð1=2Þqðu2 þ v2Þ is the total energy, and c is the ratio of specific heats of the fluid. The x and y com-
ponents of the viscous flux vector can be written as
fvisc ¼ l

0
2ux þ kðux þ vyÞ

vx þ uy

u½2ux þ kðux þ vyÞ� þ vðvx þ uyÞ þ Cp

Pr
Tx

8>>>><
>>>>:

9>>>>=
>>>>;
;

gvisc ¼ l

0
vx þ uy

2vy þ kðux þ vyÞ
v ½2vy þ kðux þ vyÞ� þ uðvx þ uyÞ þ Cp

Pr
Ty

8>>>><
>>>>:

9>>>>=
>>>>;
; ð81Þ
where l is the dynamic viscosity, k is the bulk viscosity coefficient (equal to �2/3 by Stoke’s hypothesis), Cp is the specific
heat capacity at constant pressure, Pr is the Prandtl number, T ¼ p=ðqRÞ is the temperature, and R is the gas constant. In each
of the flux components above, the subscripts x and y represent first derivatives with respect to x and y i:e: ux ¼ @u

@x

� �
. These

first derivatives in the flux components result in second derivatives in the governing equation (Eq. (79)). The second deriv-
atives can be eliminated by rewriting Eq. (79) as a first-order system
@U
@t
þr � Finv Uð Þ � r � Fvisc U;Qð Þ ¼ 0; ð82Þ

Q �rU ¼ 0 ð83Þ
where Q is the auxiliary state vector. Couette flow is a well-known analytical solution to Eq. (79) (and by extension to Eqs.
(82) and (83)). Consider the case where two walls (of infinite extent in the x and z directions) are separated by a distance H in
the y direction. The lower wall is stationary and has a temperature of Tw, while the upper wall is moving with speed Uw in the
x direction and has a temperature of gTw. If l ¼ const, the pressure p ¼ const, and there is an analytical solution for the total
energy E which takes the form
E ¼ p
1

c� 1
þ

U2
w

2R
y
H

� �2

Tw þ y
H

� �
g� 1ð ÞTw þ Pr U2

w
2Cp

y
H

� �
1� y

H

� �
 �
2
4

3
5: ð84Þ
Approximate solutions to this problem were obtained using VCJH schemes in conjunction with the RK54 scheme for time
marching, the Rusanov approach for computing the inviscid numerical fluxes and the LDG approach for computing the vis-
cous numerical fluxes. The 1D approach was extended to 2D on quadrilateral elements using a tensor product formulation
consistent with the approach used in [14,15,27].

Solutions were obtained on the rectangular domain ½�1;1� 	 ½0;1� using regular quadrilateral grids with 2~N 	 ~N elements.
The initial condition for each simulation was a uniform flow of air (Pr ¼ 0:72; c ¼ 1:4) with u ¼ Uw and v ¼ 0. The flow was
constrained on the left and right by periodic boundary conditions, from below by an isothermal wall boundary condition
(with u ¼ 0 and Tw ¼ 300 K), and from above by a moving isothermal wall boundary condition (with u ¼ Uw and
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g ¼ 1:05). During the simulations, the pressure at the moving wall was fixed (p ¼ const). The value of Uw was chosen such
that the Mach number at the moving wall was M ¼ 0:2, and the Reynolds number (based on H ¼ 1:0) was 200. Under these
conditions, each simulation was marched forward in time until the residual reached machine zero.
6.1. Accuracy and explicit time-step results

Table 5–7 contain accuracy and explicit time-step results for several VCJH schemes formed by pairing: (1) cdg and jdg , (2)
csd and jsd, (3) chu and jhu, and finally (4) cþ and jþ. Each scheme was run with polynomial orders p ¼ 2 and p ¼ 3, a value of
b equal to 0.5 and values of s ¼ 0 and s ¼ 0:1. In each case, orders of accuracy and absolute measurements of the error were
obtained using L2 norms and seminorms of errors in the total energy E and its gradient rE. Explicit time-step limits were
obtained on a grid with ~N ¼ 8.
Table 5
Accuracy of VCJH schemes for the Couette flow problem: p ¼ 2. The inviscid numerical flux was computed using a Rusanov flux and the viscous numerical flux
was computed using a LDG flux with b ¼ 0:5.

c;j Grid s ¼ 0 s ¼ 0:1

L2 err. OðL2Þ L2s err. OðL2sÞ L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg ~N ¼ 2 7.39e�05 1.83e�03 7.33e�05 1.83e�03
~N ¼ 4 8.93e�06 3.05 4.56e�04 2.01 8.97e�06 3.03 4.56e�04 2.01
~N ¼ 8 1.11e�06 3.01 1.13e�04 2.01 1.12e�06 3.00 1.13e�04 2.01
~N ¼ 16 1.41e�07 2.98 2.80e�05 2.01 1.40e�07 3.01 2.80e�05 2.01

csd;jsd ~N ¼ 2 7.41e�05 1.83e�03 7.33e�05 1.83e�03
~N ¼ 4 8.92e�06 3.05 4.56e�04 2.01 8.95e�06 3.04 4.56e�04 2.01
~N ¼ 8 1.11e�06 3.01 1.13e�04 2.01 1.11e�06 3.01 1.13e�04 2.01
~N ¼ 16 1.40e�07 2.99 2.80e�05 2.01 1.39e�07 3.00 2.80e�05 2.01

chu;jhu ~N ¼ 2 7.41e�05 1.83e�03 7.34e�05 1.83e�03
~N ¼ 4 8.92e�06 3.05 4.56e�04 2.01 8.94e�06 3.04 4.56e�04 2.01
~N ¼ 8 1.11e�06 3.01 1.13e�04 2.01 1.11e�06 3.01 1.13e�04 2.01
~N ¼ 16 1.39e�07 2.99 2.81e�05 2.01 1.39e�07 3.00 2.80e�05 2.01

cþ;jþ ~N ¼ 2 7.42e�05 1.83e�03 7.34e�05 1.83e�03
~N ¼ 4 8.92e�06 3.06 4.56e�04 2.01 8.93e�06 3.04 4.56e�04 2.01
~N ¼ 8 1.10e�06 3.01 1.13e�04 2.01 1.11e�06 3.01 1.13e�04 2.01
~N ¼ 16 1.39e�07 2.99 2.81e�05 2.01 1.39e�07 3.00 2.80e�05 2.01

Table 6
Accuracy of VCJH schemes for the Couette flow problem: p ¼ 3. The inviscid numerical flux was computed using a Rusanov flux and the viscous numerical flux
was computed using a LDG flux with b ¼ 0:5.

c;j Grid s ¼ 0 s ¼ 0:1

L2 err. OðL2Þ L2s err. OðL2sÞ L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg ~N ¼ 1 2.72e�05 4.85e�04 2.69e�05 4.85e�04
~N ¼ 2 1.55e�06 4.13 5.96e�05 3.02 1.56e�06 4.11 5.96e�05 3.02
~N ¼ 4 9.68e�08 4.01 7.44e�06 3.00 9.76e�08 4.00 7.44e�06 3.00
~N ¼ 8 6.07e�09 3.99 9.30e�07 3.00 6.13e�09 3.99 9.30e�07 3.00

csd;jsd ~N ¼ 1 2.72e�05 4.85e�04 2.69e�05 4.85e�04
~N ¼ 2 1.55e�06 4.13 5.96e�05 3.02 1.56e�06 4.11 5.96e�05 3.02
~N ¼ 4 9.67e�08 4.01 7.44e�06 3.00 9.71e�08 4.01 7.44e�06 3.00
~N ¼ 8 6.06e�09 3.99 9.30e�07 3.00 6.08e�09 4.00 9.30e�07 3.00

chu;jhu ~N ¼ 1 2.72e�05 4.85e�04 2.69e�05 4.85e�04
~N ¼ 2 1.55e�06 4.13 5.95e�05 3.02 1.56e�06 4.11 5.96e�05 3.02
~N ¼ 4 9.67e�08 4.01 7.44e�06 3.00 9.70e�08 4.01 7.44e�06 3.00
~N ¼ 8 6.07e�09 3.99 9.30e�07 3.00 6.08e�09 4.00 9.30e�07 3.00

cþ;jþ ~N ¼ 1 2.72e�05 4.85e�04 2.69e�05 4.85e�04
~N ¼ 2 1.55e�06 4.13 5.95e�05 3.02 1.56e�06 4.11 5.96e�05 3.02
~N ¼ 4 9.68e�08 4.00 7.44e�06 3.00 9.69e�08 4.01 7.44e�06 3.00
~N ¼ 8 6.09e�09 3.99 9.29e�07 3.00 6.07e�09 4.00 9.30e�07 3.00



Table 7
Time�step limits (Dtmax) of VCJH schemes on the grid with ~N ¼ 8 for the Couette flow problem: p ¼ 2 and 3. The inviscid numerical flux was computed using a
Rusanov flux and the viscous numerical flux was computed using a LDG flux with b ¼ 0:5

p ¼ 2 p ¼ 3

s ¼ 0 s ¼ 0:1 s ¼ 0 s ¼ 0:1

cdg ;jdg 3.79e�03 3.67e�03 2.04e�03 1.99e�03
csd;jsd 5.93e�03 5.75e�03 3.09e�03 3.00e�03
chu;jhu 7.84e�03 7.59e�03 3.55e�03 3.44e�03
cþ;jþ 8.10e�03 7.84e�03 3.67e�03 3.56e�03
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The results indicate that, as c and j increase, the time-step limit increases. This trend, which was originally observed for
the 1D linear problems, holds in the context of this 2D nonlinear problem. For p ¼ 2 and s ¼ 0, Table (7) shows that the
scheme with c ¼ cdg and j ¼ jdg has a time-step limit of 3.79e�03, while the scheme with c ¼ cþ and j ¼ jþ has a time-step
limit of 8.10e�03.

Finally, the results indicate that increasing c and j (and thus increasing the time-step limit) has a negligible effect on the
absolute error of the scheme. This is in contrast to the 1D, linear results, where increasing c and j caused an increase in the
absolute error, and in some cases, a slight decrease in the order of accuracy. For the Couette flow experiments, the error is not
significantly affected by c and j, and the expected order of accuracy is achieved for all schemes, for both values of s (s ¼ 0
and s ¼ 0:1).

7. Conclusions

A FR formulation for solving advection–diffusion problems has been presented which utilizes both flux and solution cor-
rection functions. Using an energy method, it has been shown that if both these correction functions are of VCJH type (pre-
viously identified in the context of pure advection problems), then the resulting FR scheme will be stable for linear
advection–diffusion problems, for all orders of accuracy. Consequently, the paper identifies, for the first time, a range of prov-
ably stable FR schemes for advection–diffusion problems, for all orders of accuracy. 1D linear experiments show that certain
VCJH schemes for advection–diffusion problems possess significantly higher explicit time-step limits than DG schemes,
while still maintaining the expected order of accuracy. Two-dimensional numerical experiments using the Navier–Stokes
equations confirm that such properties extend to a tensor product formulation with nonlinear fluxes.
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