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Recent developments in actuator technology have resulted in small, sim-
ple devices capable of affecting the flow field over flight vehicles sufficiently
to generate control forces. One of the devices which has been under inves-
tigation is the Miniature-Trailing Edge Effector (MiTE), which consists of
a small, 1-5% chord, moveable surface mounted at the wing trailing edge.
The high bandwidth and good control authority make the device an ideal
candidate for control of both the rigid body and flexible modes of a flight
vehicle. Unfortunately traditional control techniques do not address the
non-linear nature of the device or the competing performance goals aris-
ing from large numbers of distributed devices. Novel approaches to control
design are therefore required. To demonstrate the potential of this type
of flight control architecture and to explore suitable control synthesis tech-
niques, a remotely piloted flight vehicle has been developed. This paper
details the flight vehicle including a distributed flight control system based
upon MiTEs. The latter system includes distributed sensing, logic, and
actuation. This paper also describes an applicable novel control synthesis
technique based upon the theory of collectives. The theory and its applica-
tion to the design of distributed flight control systems is presented. Results
of flight tests with conventional control surfaces and with a MiTE based
control system are provided.

Introduction

VARIOUS actuation devices have been recently
developed which can be used to locally affect

the flow-field over flight vehicles sufficiently to gen-
erate control forces. Often constructed using meso-
or smaller scale manufacturing processes and utiliz-
ing a variety of actuation technologies, these devices
are small in size, low in cost, and typically binary
in nature. These new devices offer many poten-
tial advantages for flight vehicle control, including
robustness due to the large number of devices and
simplicity through elimination of complicated servo-
positioning. Furthermore, the high bandwidth and
distributed placement of the new devices allows for
structural as well as rigid body mode control.

Several researchers have been developing small de-
vices for flow control.1,2 At Stanford University re-
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search in small flow control devices started in 1998
and has focused on Miniature-Trailing Edge Effectors
(MiTEs).3–5 The MiTEs are small trailing edge de-
vices, approximately 1-5% chord in height, actuated
with deflection angles up to 90 degrees. The MiTE
concept is inspired by Gurney flaps originally devel-
oped and applied to racing cars by Robert Liebeck
and Dan Gurney. These devices protrude vertically
into the flow and cause a stable separation region to
form changing the sectional lift and moment com-
parable to a traditional flap of much larger size.6

Numerous wind tunnel tests3,5, 7, 8 and CFD simula-
tions3,9, 10 have confirmed the influence and behavior
of small flaps. The motion of the MiTEs relative to
the free-stream requires significantly smaller actuator
force for a given change in sectional lift compared with
a conventional flap. The lower aerodynamic moments,
combined with the small device mass, results in high
bandwidths, with designs achieving levels up to 40 Hz.

Although extensive aerodynamic testing has been
completed with these types of small devices, re-
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Fig. 1 Concept wing with MiTE effectors.

searchers are only beginning to address their poten-
tial for active control. One area of application that
has been explored is the aeroelastic control of high
aspect ratio wings. Recent experiments have demon-
strated the capability of MiTEs as aeroelastic control
devices, specifically to stabilize a wing operating be-
yond its flutter speed.11 These experiments, however,
have only addressed control with a limited number of
devices and were performed with significant support
equipment.

Other control challenges can be addressed with
a distributed flight control system based upon the
MiTEs. Figure 1 shows one concept in which the com-
plete trailing edge is equipped with MiTEs. For exam-
ple, the large number of devices allows for tailoring of
the lift distribution at off-design flight conditions. This
type of application is already being pursued by Airbus
using an A340 equipped with miniature trailing edge
devices.22 The small, high-bandwidth devices can also
alleviate gust loads, resulting in reduced structural
weight. The devices also allow for arbitrary combina-
tions of control forces and are ideal for configurations
such as flying wings. Flying wings offer two further
challenges which may be addressed by a MiTE based
control. First, such configurations often experience
coupling between the rigid body short period mode
and the wing bending modes, resulting in degraded
handling qualities or flutter. Second, the performance
of flying wings is usually increased by flying with re-
laxed longitudinal static stability. A MiTE based dis-
tributed control architecture, with its high bandwidth
and large number of devices, would be able to address
these control challenges. As a step toward addressing
these challenges, the current effort is focused on de-
veloping a suitable flight vehicle and demonstrating a
flight ready MiTE based control system.

Researchers are also investigating MiTEs and re-
lated devices for application to rotorcraft12 and wind
turbines.13 The developments presented in this work
of a practical, flight ready, distributed control system
based upon MiTEs can also be applied to these areas.

Traditional control techniques, however, do not ad-
dress the nonlinear nature of the MiTEs or the com-

peting performance goals arising from potentially large
numbers of distributed devices. The approach pur-
sued in the current work is to distribute the control
among agents located throughout the flight vehicle.
Each agent consists of a number of effectors, control
logic, and local sensors. The controller design be-
comes a distributed optimization for parameters gov-
erning the control policies that the individual agents
will follow. Formulating the controller design in this
manner allows for the application of techniques from
machine learning, statistics, multi-agent systems, and
game theory. The current work leverages these fields
by applying Collective Intelligence (COIN) to the dis-
tributed control design. COIN is a framework for de-
signing a “collective”, defined as a system of adaptive
computational agents with a system-level performance
criteria. COIN techniques have been applied to a va-
riety of distributed optimization problems including
network routing, computing resource allocation, and
data collection by autonomous rovers.14–16 Probabil-
ity Collectives (PC) theory formalizes and substan-
tially extends the COIN framework.17 PC theory has
been compared with results obtained with traditional
COIN approaches19 and has also been demonstrated
on new problem domains.20,21 This work applies PC
theory to the design of distributed, nonlinear con-
trollers robust to noise and disturbances.

The paper begins with a description of the flight
demonstrator including the distributed flight control
architecture based upon the MiTEs. The analytical
model used for the control design is described along
with comparisons of open-loop flight tests. The dis-
tributed controller design approach based upon Prob-
ability Collectives is then presented. The paper con-
cludes with controller designs and flight test results.

Flight Demonstrator
General Description

To demonstrate the potential of novel distributed
flight control architectures and to explore suitable con-
trol synthesis techniques, a remotely piloted flight ve-
hicle has been developed. Figure 2 shows the flight
demonstrator equipped with conventional control sur-
faces. The vehicle can be configured with either four
conventional servo-actuated control surfaces or utilize
a MiTE based distributed flight control system. The
vehicle is a six foot span flying wing with 30 degree
sweep on the outboard panels. The outboard sections
are of constant chord set to 12 inches to accommo-
date MiTEs with 2% chord deflected height. The
wing skins are manufactured from balsa core sand-
wich panels faced with carbon fiber and fiberglass.
The vehicle has an electric powerplant composed of
an advanced external rotor brushless motor driving a
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Fig. 2 View of flight vehicle.

10-by-6 inch folding propeller drawing current from a
three cell Lithium Polymer battery pack. The vehicle
is designed to fly efficiently at an overall lift coefficient
of 0.7 through a combination of airfoil selection and
wing washout. The flying weight of the conventional
control configuration is 4.4 pounds.

Communication with the vehicle is accomplished us-
ing two separate radio frequency links, one for pilot
commands, and the other for data. The vehicle is flown
by a pilot using standard 72 MHz radio-control tech-
nology. The transmitted pilot commands are received
and processed by a central micro-controller. In the
case of the conventional configuration the commands
are passed on unchanged to the servo-actuators. For
both configurations, the commands are sent to a dedi-
cated data logging system. The latter includes another
micro-controller which combines the commanded pilot
inputs with sampled measurements of airspeed, alti-
tude, 3 axis angular rates, and 3 axis accelerations.
The data is broadcast at 50 Hz to a ground station
using a 900 MHz AeroComm serial radio. The ground
station, comprised of a receiving AeroComm radio con-
nected to a laptop, records the data.

The vehicle was tested in two configurations, free-
flight and captive car testing. The only difference
between the two configurations is the latter prevented
the vehicle from displacing while allowing it to rotate
about any axis. In all other respects, such as power,
communication, and data acquisition, the configura-
tions were identical. For the car-top testing the vehicle
was mounted at its center of gravity to a frame which
was then attached to a car, as shown in Figure 3. This
provided a much more controlled environment for eval-

Fig. 3 View of captive car testing configuration.

uating controller designs. The effects on the vehicle
dynamics are discussed in more detail in section de-
scribing the analytical model.

Distributed Control Architecture
The distributed control architecture is shown

schematically in Figure 4. In this configuration the pi-
lot commands received by the central micro-controller
are broadcast to both the logging micro-controller and
to the distributed agents through a communication
and power bus running the length of the trailing edge.
The power to the distributed agents is provided by
centralized batteries, although the power supply could
also be distributed through the airframe. The bus pro-
vides eight possible positions for the distributed agents
including three positions in each outboard wing and
two in the centerbody. A unique feature of the archi-
tecture is its modularity which allows all the agents to
be interchanged and supports “hot-plugging” between
the different positions. Although the flight vehicle is
relatively small, the architecture and hardware devel-
oped for this experiment can easily be scaled to a much
larger vehicle with little modification.

A close-up view of one of the distributed agents
is shown in Figure 5 mounted in one of the center-
body positions. Each agent is comprised of two MiTE
effectors, supporting logic and power conditioning cir-
cuitry, and an interface with a local sensor. Smaller
MiTE devices and additional sensors could easily be
incorporated without significant changes to the ar-
chitecture. The complete agent measures 8.5 inches
in length and 1.75 inches in depth. The MiTE de-
vices have been manufactured to conform into the
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Fig. 4 Distributed flight control architecture.

Fig. 5 MiTE based “agent” in flight configuration.

trailing edge shape, leaving a clean aerodynamic sur-
face when not actuated. The agent logic consists of
a micro-controller which processes the broadcast pi-
lot commands, fuses this with the locally sensed data,
and commands the positions of the MiTEs. For the
closed-loop experiments described later, the local sen-
sors consisted of single axis accelerometers although
other sensors could be used for different applications.

The MiTEs are actuated using small DC pager mo-
tors and are capable of either two or three states,
depending upon the configuration. Due to the small
size, high bandwidth, and simple mechanism, no posi-
tioning feedback is required. For increased bandwidth
the MiTEs are paired such that one deflects neutral-
down while the other neutral-up. This configuration
was used in the successful flutter suppression tests.11

Alternatively each MiTE can achieve three states: up,
down, and neutral through either kinematic design or
with a centering spring. A variant capable of three
states was used for the tests during this work.

Analytical Model
Flight Configuration

A linear aerodynamic model was generated in
LinAir23 and stability derivatives were obtained. For
the conventional configuration, the control surfaces
were modelled as plain flaps. Two surfaces were lo-
cated on each wing and were deflected in unison. Mix-
ing of the pilot commands was performed within the
remote-controlled transmitter. The result was to have
the surfaces perform both the elevator and aileron
functions. For modelling purposes the conventional
inputs were then elevator and aileron, allowing the
equations of motion to be decoupled.

The MiTEs are also modelled as plain flaps by
matching the steady sectional lift and pitching mo-
ment increments. Steady thin airfoil theory provided
the equivalent flap chord percentage and angle of de-
flection to model the MiTEs. The flight vehicle geom-
etry result in devices with 2% chord deflected height.
Based upon previous computational and experimental
results7,10 the expected force and moment increments
are: ∆Cl = 0.4 and ∆Cmac = -0.10. These are ap-
proximated using thin airfoil theory with flap chord
percentage cf/c = 0.125 and δmax = 8.9 degrees. The
conventional control configuration has the same flap
chord percentage but is capable of much higher deflec-
tion angles. The linear model provided the aerody-
namic control forces on the vehicle generated by the
MiTE equivalent deflection. These results, along with
the computed stability derivatives and mass properties
obtained from tests, are combined into the equations
of motion.24 The resulting system equations are of the
form,

x(k+1) = [A]x(k) + [B]u(k) + w

y(k) = [C]x(k) + v

u(k) = [u(k)
1 u

(k)
2 ... u

(k)
N ]T (1)

where v and w are the noise and disturbance, respec-
tively. The non-linearity in the system results from
discrete commanded positions, ui, of the MiTEs.

Car Test Configuration

A significant portion of the quantitative testing was
performed with the flight vehicle mounted to an auto-
mobile, as shown previously in Figure 3. A ball joint
was located at the center of gravity and allowed the
vehicle to rotate about all three axes without displac-
ing. The actual point of rotation was located slightly
below the center of gravity. The aerodynamic effects of
the automobile on the flight vehicle dynamics were ne-
glected. The effect of constraining the displacements
and the vertical offset on the dynamics were however
considered.
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Fig. 6 Root locus versus increasing mass.

Following25 one way to model the effect of constrain-
ing the flight vehicle is to increase the mass ratio. In
the limit this will result in the same set of equations
derived with the center of gravity constrained. It is,
however, informative to examine the root locus as the
mass ratio is increased to observe the changes in the
system dynamics.

The root locus versus increasing the mass ratio is
shown in Figure 6. The phugoid pole moves quickly
towards the origin rapidly decreasing its frequency. In
the limit this pole can be eliminated from the system
of equations. Since this mode is typically corrected
for by the pilot its absence will have little effect upon
the test results. The short period mode is seen to
significantly decrease in damping while only slightly
changing in natural frequency. In the limit, however,
the mode is still stable. The other important pole
is the lateral oscillation which decreases in frequency
with increasing mass ratio. The mode remains slightly
unstable. These differences in the dynamics indicate
that any testing performed in the captive configuration
will be conservative when compared with actual flight.

The lateral mode is further destabilized by the effect
of the vertical offset between the c.g. and the center
of rotation of the ball joint. To counter this effect
during the cartop tests, the wingtips were modified ei-
ther by inverting the baseline winglets or through an
added anhedral element. These slightly lowered the
c.g. and increased the damping of the lateral oscilla-
tion by aerodynamic means.

Open Loop Tests
Captive Car-top Tests

Captive cartop tests were performed with the flight
vehicle equipped with both conventional control sur-
faces and with the MiTEs. The modified wingtip
configurations were used during the tests to stabilize
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Fig. 7 Comparison of longitudinal responses.
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Fig. 8 Corrected comparison of longitudinal re-
sponses.

the vehicle dynamics and provide a better indication
of the effect of the control input. Inertial properties
were also significantly different due to the higher mass
of the MiTE actuators and the requirements for main-
taining the overall vehicle center of gravity position.
The pitch inertia, for example, increased 14%, while
the roll inertia increased 8%.

The response to elevator doublets are compared in
Figure 7. The data shown for each configuration is
the averaged response over multiple doublets. The
MiTE input is scaled to the equivalent conventional
input. Differences in the vehicle dynamics, control in-
put amplitude, and control input time history result
in a larger response for the conventional configuration.
To provide a more direct comparison and to validate
the effect of the MiTEs on the vehicle dynamics, sys-
tem identification was performed on the data obtained
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Fig. 9 Corrected comparison of lateral responses.

for both configurations. The identified models were
then used to remove the differences in the dynamics.
Differences in the input time histories were removed
by converting the conventional input into an equiv-
alent MiTE input and simulating the response using
the identified dynamics. This comparison is shown in
Figure 8. A similar scaled and corrected comparison
of the lateral response is shown in Figure 9. Both
show good agreement, validating both the influence of
the MiTEs on the vehicle dynamics and the analytical
model. The resulting models are now also suitable for
the design of controllers to utilize the MiTEs.

Distributed Controller Design
In general at each time step k a controller uses the

current and N previous measurements {y(k), y(k −
1), ..., y(k−N)}, to determine the control inputs, ui(k),
for each actuator i. This mapping is the control policy,
πi, for actuator i, and is defined as,

πi : f(~Yi) → ui (2)

where ~Yi is referred to as the feature vector with Yi be-
ing combinations of the measurements available to i,
yi. Note that these combinations can be nonlinear. In
linear control for example, the control policies are lin-
ear combinations of the most recent measured outputs
mapped into continuous control inputs. In general the
control policies may use nonlinear combinations of cur-
rent and previous measurements and map to discrete
control inputs. The latter characteristic in particu-
lar is important for control design with the Miniature
Trailing Edge (MiTE) effectors.

The control synthesis goal is to search for policies
which minimize a specified objective function of the
system states x(k), and control inputs u(k), subject to
the system dynamics over some time horizon k = 1..T .
In discrete time linear quadratic regulation (LQR), for
example, this function is given by,

J(π) =
T∑

k=1

x(k)T [Q] x(k) + u(k)T [R] u(k)

where the matrices [Q] and [R] are used to weight the
importance of the responses versus the control effort.
The system dynamics act as constraints and are given
by,

x(k + 1) = [A] x(k) + [B] u(k)
y(k) = [C] x(k) + [D] u(k)

with the control input u(k) given by the linear relation,

u(k) = [K] x(k)

In general, however, the objective function can be
arbitrary. For example consider stabilizing the dy-
namics of an aircraft with multiple control surfaces
while minimizing the profile and induced drag associ-
ated with that effort. The drag is a nonlinear function
of the combination and amount the surfaces are de-
flected. In the aeroelastic control experiments,11 the
goal was to stabilize a flexible wing beyond its critical
aeroelastic flow speed. In this case a suitable objec-
tive is to maximize the controllable flow speed. These
objective functions are no longer quadratic and thus
can not be addressed by LQR, even if the system were
linear.

The control design must also address two additional
features. First is the presence of noise and disturbance.
Linear quadratic gaussian (LQG) control extends LQR
to account for noise and disturbance, although this
requires a Kalman filter to provide estimates of the
states from the observed measurements. A model for
the system dynamics must also be assumed. Second
is the distributed nature of systems. This causes each
actuator to have a limited amount of information or
some added dynamics are associated with the informa-
tion gathering, for instance transmission delays.

For LQR and LQG, the optimal control policy is
found by solving the algebraic Ricatti equation, but
for general objectives and for nonlinear policies, an op-
timization approach is required. The disadvantage is
the associated computational cost of the optimization
technique which may involve numerous simulations
or the system. Further, there is a large amount of
literature, techniques, and practical experience asso-
ciated with linear control design. The challenges and
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potential of designing nonlinear, robust, distributed
controllers with arbitrary objective functions however
warrants exploration of the optimization approach.
Optimization also allows for simple policies to be con-
sidered that can then be implemented easily in hard-
ware. Probability Collectives provides an approach
for performing this optimization and is especially well
suited to problems that are distributed, nonlinear, and
for which robust solutions are sought.

Overview of Probability Collectives Theory

Probability Collectives (PC) theory formalizes
and substantially extends the Collective Intelligence
(COIN) framework.17 The COIN solution process
begins by assigning agents to the variables in the opti-
mization problem. The agents then select actions and
receive rewards based upon the system objective.16

These rewards are then used by the agents to deter-
mine their next choice of action. The process reaches
an equilibrium when the agents can no longer improve
their rewards by changing actions. This approach is
similar to many other methods in reinforcement learn-
ing (RL).26 The core insight of PC theory, in contrast
to COIN and RL techniques, is to concentrate on how
the agents update the probability distributions across
their possible actions rather than specifically on the
joint action generated by sampling those distributions.

One way to view PC theory is as an extension of con-
ventional game theory. In any game, the agents are
independent, with each agent i choosing its move xi

at any instant by sampling its probability distribution
(mixed strategy) at that instant, qi(xi). Accordingly,
the distribution of the joint-moves is a product distri-
bution, P (x) =

∏
i qi(xi). In this representation, all

coupling between the agents occurs indirectly; it is the
separate distributions of the agents that are coupled,
while the actual moves of the agents are independent.
Bounded rational agents balance their choice of best
move with the need to explore other possible moves.
Information theory shows that the equilibrium of a
game played by bounded rational agents is the opti-
mizer of a Lagrangian of the probability distribution
of the agents’ joint-moves.17,18 Since the joint proba-
bility distribution is still a product, the optimization
of the Lagrangian can be done in a completely dis-
tributed manner.

Optimization Approach

Consider the unconstrained optimization problem,

min
~x

J(~x)

where each agent sets one component of ~x as that
agent’s action and the xi are discrete. The La-
grangian17 Li(qi) for each agent as a function of the

probability distribution across its actions is,

Li(qi) = E[J(xi, x(i))] − T S(qi)

=
∫

dxiqi(xi)E[J(xi, x(i))|xi] − T S(qi)

where J is the world utility (system objective) which
depends upon the action of agent i, xi, and the ac-
tions of the other agents, x(i), and T is referred to as
the temperature. The expectation E[J(xi, x(i))|xi] is
evaluated according to the product distribution of the
agents other than i:

P (x(i)) =
∏

j 6=i

qj(xj)

The entropy S is given by:

S(qi) = −
∫

dxjqi(xj) ln qi(xj)

Each agent then addresses the following local opti-
mization problem,

min
qi

Li(qi)

s.t.
∫

dxiqi(xi) = 1, qi(xi) ≥ 0, ∀xi

where the constraints to ensure the qi are valid prob-
abilities.

The Lagrangian is composed of two terms weighted
by the temperature T : the expected reward across i’s
actions, and the entropy associated with the probabil-
ity distribution across i’s actions. During the mini-
mization of the Lagrangian, the temperature provides
the means to trade-off exploitation of good actions
(low temperature) with exploration of other possible
actions (high temperature).

The minimization of the Lagrangian is amenable
to solution using gradient descent or Newton updat-
ing since both the gradient and the Hessian are ob-
tained in closed form.18 Performing the Lagrangian
minimization involves a separate conditional expected
utility for each agent. These are estimated either ex-
actly if a closed form expression is available or with
Monte-Carlo sampling if no simple closed form ex-
ists. In Monte Carlo sampling the agents repeatedly
and jointly IID (identically and independently dis-
tributed) sample their probability distributions to gen-
erate joint moves, and the associated objective values
are recorded. The Probability Collectives approach
includes techniques for improving the efficiency of the
sampling process.18 In the context of control design
each sample is equivalent to a single simulation of the
system with each agent selecting a policy by sampling
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from its distributions and using that policy throughout
the simulation. Noise and disturbances are similarly
sampled from their distributions and can therefore be
viewed as additional agents who are not updating their
distributions.

The detailed mathematical foundations of the Prob-
ability Collectives approach are provided in Wolpert,
et al.17,18 The algorithm for implementing the ap-
proach on a variety of optimization problems is de-
scribed in Bieniawski, et al.21

Detailed Formulation

The controller synthesis using the Probability Col-
lectives begins by defining how the agent policies map
from the features available to agent i, yi, to the agent
control input, ui. In the current work the agent poli-
cies follow a threshold function with a vector of weights
θi assigned to the features,

ui =

{+1 θT
i y ≥ 1

0 otherwise

−1 θT
i y ≤ −1

}

The features can include global or local sensor values
or the actions of other agents. In the current work
the features consist only of local sensor measurements
so no communication is considered between the agents.
Note that the agent actions are assumed to be symmet-
ric, that is, for a given set of features y which resulted
in command u, the negative would result in the com-
mand −u.

The next step is to define the objective of the control
synthesis. For the current work the objectives similar
to linear quadratic control are specified,

J(π) =
T∑

k=1

y(k)T [Q] y(k) + u(k)T [R] u(k) (3)

where the matrices [Q] and [R] weight the importance
of the responses versus the control effort. The system
dynamics are also assumed to be linear and are given
by Eqn. 1. The remaining nonlinearity in the system
is due to the discrete possible commanded actuator
positions.

The controller design is now reduced to the following
unconstrained optimization,

min
~θ1... ~θN

V (π)

which can be performed in a distributed manner using
the Probability Collectives approach. Distributions for
the noise, disturbance, and initial conditions are sam-
pled each time the system is simulated. Note that
although discrete time dynamics are shown the ap-
proach is just as well suited for nonlinear dynamics
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Fig. 10 Convergence of objective for distributed
controller.
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Fig. 11 Convergence of one instance of variables.

since all that is required is a simulation and a resul-
tant value for the objective.

Results
To illustrate the distributed control design approach

a distributed stability augmentation system was de-
signed. Each of the agents located on the outboard
sections of the flight vehicle are provided with local
measurement of the vertical velocity. Each then uti-
lizes a single parameter threshold policy to minimize
the objective function given by Eqn. 3. Weights of
Q=0.1 and R=0.1 were used. The resulting optimiza-
tion has six total variables and was performed in a
distributed manner using the Probability Collectives
approach. For each simulation performed during the
optimization, initial conditions were assigned as a vec-
tor of body rates of random direction and magnitude
equal to 20 deg/sec.

The optimization was repeated 10 times to study
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Fig. 12 Probability distributions after 300 itera-
tions.

the convergence behavior of the approach. Figure 10
shows the iteration history of the objective function.
The mean and error bars indicating the standard devi-
ation are shown. Each iteration used 10 simulations of
the system. Other details and parameter settings for
the optimization are available in Bieniawski.27 Each
optimization resulted in similar values for the objective
function although quite differing values were obtained
for the variables. This indicates there are many pos-
sible solutions, which can be expected. The variable
iteration history is shown for a single case in Figure 11.
Note that the resulting controller is not symmetric
implying that the controller is coupling the lateral
and longitudinal responses. The Probability Collec-
tives approach explicitly uses probability distributions
that can be studied to determine the sensitivity of
the optimum. Figure 12 shows the distributions for
the variables after 300 iterations. They indicate that
variables 1 and 6, the outermost agents, are most im-
portant with the other agents being allowed quite a
large variation.

Figure 13 shows a comparison of the open loop and
closed loop time histories for the vehicle angular rates.
The controller is seen to dramatically decrease the
pitch and roll response and to also decrease the yaw
response. Note that the objective function only con-
sidered the roll and pitch rates through weights on the
vertical velocity so no effort was made to minimize the
yaw rate.

Closed Loop Tests
Closed loop tests were performed with the flight

vehicle in the captive car top configuration. The dis-
tributed controllers used locally sensed accelerations
and independent decision making. The controllers
were intended to provide stability augmentation, par-
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Fig. 13 Comparison of open and closed loop re-
sponse.

Root mean square responses, deg/sec
Pitch rate Roll rate Yaw rate

Open loop 11.1 17.2 18.1
Closed loop 14.8 15.7 12.3
Difference +33% -9% -33%

Table 1 Results of initial tests with distributed
stability augmentation system.

ticularly for the lateral oscillation mode of the flight
vehicle.

In the experiments, the two outboard agents were
provided with local vertical accelerations that were
then integrated and filtered to provide vertical veloc-
ities. A single gain was applied to the local velocities
and the resulting quantity combined with commanded
pilot inputs. If the total exceeded a specified thresh-
old both MiTEs belonging to the agent were actuated
in unison. Table 1 provides an initial comparison of
the performance with the distributed controllers on
and with them off. Listed are the root-mean-square
values for the flight vehicle angular rates. A signif-
icant decrease in the response of the lateral mode is
obtained. The response of the longitudinal mode is,
however, increased with the controller on. This is par-
tially explained by close examination of the optimized
closed loop response in Figure 13, which also shows
increased pitch rate over the open loop. Many factors
associated with the testing and with the hardware im-
plementation may also explain the increase. Further
testing is required to provide a more comprehensive
comparison.

Summary
This paper describes a flight vehicle developed with

a distributed control architecture based upon Minia-
ture Trailing Edge Effectors (MiTEs). The details of
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the demonstrator, including the vehicle configuration,
distributed architecture, and hardware are provided.
The controller synthesis approach based upon Prob-
ability Collectives theory was discussed. Details were
provided of the theory and its application to the design
of nonlinear, robust, distributed controllers. The re-
sults of distributed controller designs were presented.
Flight tests were performed to characterize the re-
sponse of the demonstrator and the distributed flight
control architecture. Results of initial closed loop tests
with a distributed stability augmentation system were
also provided.
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