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One of the most interesting problems in supersonic aerodynamics has been
to find profile shapes that have minimum pressure drag, subject to a set of
geometric constraints. Considerable work was done in this area in the fifties,
all of which relied on a linearized flow model. We revisit this problem using
a more sophisticated flow model. It is logical to expect the optimum profile
shape to look different. We confirm this, but also note that the differences
are very small. We then examine the equations of fluid flow and try to see
why the linearized flow model works well for this problem and where the
differences come from.

1 Problem Definition

The problem that we study in this paper is that of finding the two-dimensional
(airfoils) and axisymmetric (bodies of revolution) profile sections that have
minimum pressure drag in supersonic flow. We assume that the flow is in-
viscid, modelled by the nonlinear Euler equations. We also enforce the con-
straints that the ends are pointed and the enclosed area/volume is fixed.

2 Results from Classical Theory

Analytical solutions for the problem being studied have been obtained, as-
suming a linearized flow model. For the 2 − d case the optimum profile is
parabolic.

y(x) = 3Ax(1 − x) , τ =
3A

2
, (1)

where A is the area enclosed and τ is the thickness-chord ratio. The drag
coefficient is given by

Cd =
12A2

√
M2 − 1

. (2)

For the axisymmetric case, the profile shapes that solve this problem are
the well known Sears-Haack profiles, discovered independently by Sears(1947)
and Haack(1947). The derivation of the Sears-Haack profiles is outlined in
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the book by Ashley and Landahl [1] and also in an article by Carlo Ferrari
[2]. The Sears-Haack profile is given by

y(x) =

√

16V

3π2
[4x(1 − x)]

3

4 , τ =

√

64V

3π2
, (3)

where V is the enclosed volume and τ is the fineness ratio. The drag coefficient
is given by

CD = 24V . (4)

As can be observed, these profile shapes have some interesting properties.
Firstly, they are unique solutions to the optimization problem. Moreover, they
are just a function of the enclosed area/volume and not the Mach Number.

3 Nonlinear Optimization via Control Theory

In this work we apply the adjoint method developed by Jameson and his
associates during the last 15 years. ([3, 4, 5, 6]) The aerodynamic shape opti-
mization problem involves minimizing(or maximizing) a given cost function,
with parameters that define the shape of the body as the design variables,
usually of the form

I =

∫

Bξ

M(w, S) dBξ , (5)

where w is the vector of flow state variables and Sij are the coefficients of the
Jacobian matrix of the transformation from physical space to computational
space. M(w, S) in our case is just Cp, the pressure coefficient. We also have
the constraint that the state variables at the computational points have to
satisfy the flow equations, irrespective of the shape of the boundary.

∫

B

niφ
T fi(w)dB =

∫

D

∂φT

∂xi

fi(w)dD , (6)

or, when transformed to computational space

∫

Bξ

niφ
TSijfj(w)dBξ =

∫

Dξ

∂φT

∂ξi
Sijfj(w)dDξ , (7)

where φ is any arbitrary test function.
Since equation (7) is true for any test function φ, we can choose φ to be

the adjoint variable ψ. We can then add equation (7) to the cost function
defined in (5) to form the following augmented cost function.

I =

∫

Bξ

M(w, S) dBξ +

∫

Bξ

niψ
TSijfj(w)dBξ −

∫

Dξ

∂ψT

∂ξi
Sijfj(w)dDξ . (8)
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We then take a variation of the cost function described in (8)

δI =

∫

Bξ

(

∂M
∂w

δw + δMII

)

dBξ (9)

+

∫

Bξ

niψ
T

(

Sij

∂fj(w)

∂w
δw + δSijfj(w)

)

dBξ

−
∫

Dξ

∂ψT

∂ξi

(

Sij

∂fj(w)

∂w
δw + δSijfj(w)

)

dDξ .

We choose ψ such that the variation in the cost function δI does not de-
pend on the variation of the solution δw. ψ is then a solution of the adjoint
equations

∂M
∂w

= −niψ
TSij

∂fj(w)

∂w
, on Bξ , (10)

(

Sij

∂fj(w)

∂w

)T
∂ψ

∂ξi
= 0, on Dξ .

One thus obtains an expression for the change in the cost function of the
form

δI =

∫

Bξ

GδFdBξ , (11)

where F(ξ) is a function defining the shape and G is the required gradient.
The gradient with respect to the design variables is obtained from the

solutions to the adjoint equations by a reduced gradient formulation ([5]).
This is modified to account for the area/volume constraints. In order to
preserve the smoothness of the profile the gradient is smoothed by an implicit
smoothing formula. This corresponds to redefining the gradient with respect
to a weighted Sobolev inner product ([4]). The optimum is then found by a
sequential procedure in which the shape is modified in a descent direction
defined by the smoothed gradient at each step, and the flow solution and the
gradient are recalculated after each shape change.

4 Results and Discussions

Optimum Profile Shapes

The results of the 2D optimization can be seen in Fig. 1 and the results of
the axisymmetric optimization can be seen in Fig. 2. As can be observed, the
nonlinear optimum profiles are slightly different from the classical optimum
profiles. They have a more rearward point of maximum thickness. The pri-
mary difference between a linearized flow model and a nonlinear model is the
appearance of shocks at the leading edge in the case of the nonlinear flow
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model. Reducing the included angle at the leading edge and moving the point
of maximum thickness backward is consistent with reducing the magnitude
of the leading edge shock. This results in a lower drag and at the same time
brings the flow closer to the linear regime.

The difference is hardly noticable for small thickness-chord/fineness ra-
tios. This is just an indicator to the fact that linear theory is a very good
approximation for small fineness ratios. Moreover, the nonlinear optimum
profiles for axisymmetric flow are a lot closer to their corresponding classical
profiles than for 2D flow. This is because of the three-dimensional relieving
effect experienced in axisymmetric flow.
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Fig. 1. Classical and Nonlinear Optimum Profiles for 2-D flow

Variation with Mach Number

The optimum profile for 2D flow changes with Mach number. The optimum
shape for two Mach numbers is shown in Fig. 3. It is seen that the point of
mazimum thickness is more backward for the higher Mach number. This again
is consistent with our earlier argument that the main goal of the nonlinear
optimization is to reduce the magnitude of the leading edge shock. Such a
variation is not observed for axisymmetric optimum profiles. This is due to
the fact that the drag coefficient is not sensitive to changes in Mach number
in this case. This can also be seen from Eqn. 4.
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Fig. 2. Classical and Nonlinear Optimum Profiles for Axisymmetric flow
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Fig. 3. Variation of 2D Optimum Profiles with Mach Number
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Discussion of Results

The main assumptions of linear theory are that the flow is isentropic, irrota-
tional, and the perturbation velocities in the axial and normal directions are
very small compared to the free-stream velocity. We observe that these are
valid assumptions except in the vicinity of the leading and the trailing edges,
where we have stagnation points. Here we have shocks that cause entropy
jumps. Moreover, the perturbation velocities are no longer small enough.
Thus we expect to see the biggest change at these points. This is found to be
true.

5 Conclusions

The minimum pressure drag problem was solved using a nonlinear flow model.
It is observed that the optimum shapes thus obtained are slightly different
from the classical results. The difference is even smaller for the case of ax-
isymmetric flow. It can be concluded that linearized theory provides a very
good approximation of the flow field for the regimes considered and thus the
optimum shapes obtained using a nonlinear flow model will be very close to
the classical results based on linear theory.
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