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Abstract
An artificial dissipation scheme using the concepts
of SLIP and CUSP is implemented on top of a base-
line three-dimensional turbomachinery flow code.
The original baseline code uses a finite-volume
method for the Navier-Stokes equations with clas-
sical Jameson-Schmidt-Turkel(JST) scalar dissipa-
tion scheme. This paper focuses on the comparison
of the performance of the CUSP scheme with the
original JST scheme for turbomachinery flow calcu-
lations. The results show that the CUSP scheme is
more reliable than the JST scheme and is capable
of providing accurate loss predictions on relatively
coarse grids.

1 Introduction
With the increased power of computers and im-
proved numerical methods, solution of the Navier-
Stokes equations has become a common place for
aerodynamic design of compressors and turbines
used in both aero-propulsion and ground-based gas
turbines. Due to its simplicity, computational ef-
ficiency and robustness, the finite-volume method
using adaptive scalar artificial dissipation originally
proposed by Jameson Schmidt and Turkelfl] (herein
called the JST scheme) has been used in many pro-
duction codes for turbomachinery calculations, in-
cluding one used at ABB Power Generation[2, 10].
As CFD is used more in the design process, the
designer also demands more on the accuracy, effi-
ciency and robustness of a CFD code. The simple
JST scheme has been blamed on by some researchers
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for inaccuracies in resolving boundary layers and
sharp shock fronts. While more elaborate TVD,
flux-splitting, and flux-difference splitting schemes
have been developed and cited for their improved
accuracy, they usually tend to exhibit less compu-
tational efficiency and robustness. In addition, the
somewhat increased complexity in coding of these
schemes also have limited their adoption in produc-
tion codes used in industry.

Recently, Jameson proposed new artificial dissi-
pation methods based on Symmetric Limited Posi-
tive (SLIP) schemes and a simple Convective Up-
wind Split Pressure (CUSP) scheme for the Eu-
ler equations[4, 5]. These new schemes have been
found to provide comparable high resolution for
shock waves[4, 5] and viscous boundary layers[6, 7]
as by the conventional TVD, flux-splitting, and flux-
difference splitting schemes while at the same time
retaining the simplicity, computational efficiency
and robustness of the original JST scheme.

In this work, we implement a CUSP scheme based
on [4, 5] in a three-dimensional turbomachinery flow
code. The baseline code uses the original JST
scheme for solving the Navier-Stokes equations with
the Baldwin-Lomax algebraic turbulence model (see
Liu and Jameson[3]). Computations using the new
scheme were done for a number of practical test cases
at ABB Power Generation. The new code has been
found to provide better accuracy and robustness
with the same computational efficiency. In this pa-
per, however, we will focus on the perfomanee of the
CUSP scheme on a supersonic wedge cascade and a
three-dimensional subsonic turbine vane. In the fol-
lowing two sections, we will first outline the original
baseline code and then present the CUSP scheme
used for our turbomachinery flow calculations. Sec-
tion 4 presents the comparison of the the computa-
tional results with the original JST scheme.
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2 The Baseline Code with
JST Artificial Dissipation

The baseline code, called turboQO, uses a finite-
volume method for the Naver-Stokes equation[3].
The JST scalar artificial dissipation is implemented
with a multi-stage Runge-Kutta time stepping
scheme to drive the computation to a steady state.
Local time-stepping, residual smoothing, and multi-
grid are used to accelerate convergence.

We first outline the basic JST dissipation scheme
of the baseline code for convenient discussion of the
new CUSP scheme in the next section.

Since implementation of a particular artificial dis-
sipation model hi three dimensions is achieved here
through the application of a one-dimensional model
in each of the three grid directions, we will illustrate
the schemes in one dimension only. A 1-D conserva-
tion law can be written as

df(v)
dx

_
(1)

With a finite volume spatial discretization, the
above equation becomes

where

(3)

dj+1 is the dissipation flux.
Within the above framework, schemes of various

kinds are distinguished by the formulation of this
dissipation flux term. Upwind biasing can be essen-
tially achieved by the appropriate choice of dj+i.

The classical Jameson-Schmidt-Turkel (JST)
scheme[l]. uses blended 1st and 3rd differences to
form the artificial dissipation fluxes needed for sta-
bility and capturing shock waves. A pressure based
switch is used to turn on the 1st differences near
shock waves. This is done by setting

(4)

(5)

=max(Qj,Qj+i)

(6)

(7)
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where ctj+i is an appropriate dissipation coeffi-
cient that is chosen to reduce the scheme into an
upwinding one near a shock when kz = 1 for a 1-D
scalar conservation law. This is achieved by setting

where

(8)

(9)

which is essentially the eigenvalue of the Jacobian of
/.

For systems of conservation laws, / is a vector and
in principle one needs to carry out a characteristic
decomposition of the system of equations and ap-
ply the above to each component of the decomposed
equations. A simplified and more economical way is
to use the maximum eigenvalue of A = |£ in equa-
tion (8) for all the equations of the system. Thus,
in the original JST scheme a,j+i is set to be

= max(\u + c|, \u - c\, \u\) = \u\

, 02 =

In the baseline turbomachinery code, the above
artificial dissipation scheme is used.

3 The New Scheme Based on
SLIP and CUSP

As can be seen hi the above discussions, the design of
a dissipation scheme consists of two parts. The first
part is to construct a high resolution non-oscillatory
scheme for a scalar conservation law. The second
part is to construct a numerical flux for a system of
equations with different wave directions and speeds.

In the classical JST scheme the first part is done
through the use of blended first and third differences
with a pressure switch to sense the presence of shock
waves where first order upwinding is needed. The
second part is done by using a scalar diffusion pa-
rameter to reduce coding complexity and computa-
tional time.

Other more sophisticated schemes for both the
first part and the second part can be constructed
and various combinations of them can be used. Re-
cently, Jameson discussed the construction of ELED
(Essentially Local Extrema Diminishing) and CUSP
schemes hi [4, 5]. ELED is a principle for construct-
ing high resolution schemes, and CUSP is a flux
splitting scheme that combines simplicity, efficiencj
and high resolution of shocks without using charac-
teristic splitting.
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3.1 The SLIP Scheme
A systematic way of obtaining ELED schemes is
to use the concept of flux limiting. In particular,
a class of limiting schemes called Symmetric Lim-
ited Positive (SLIP) schemes can be used(see [4, 5]).
In this class of schemes, an anti-diffusion term is
added to the 1st order numerical dissipation scheme
to achieve 2nd order accuracy.

dj+± = aj+i[&vj+i - L(Awj+§, A^.j)] (10)

where L is a limited average of Au^ 2 and AVj_ i. L
is designed to achieve the arithmetic mean operator
to approach 2nd order accuracy in smooth regions
while approaching zero at extrema to obtain an non-
oscillatory scheme.

Reference [4] proves that if L satisfies the following
condition the above flux limited scheme for a scalar
conservation law is LED.

PI: L(u,v) = L(v,u)
P2: L(au,av) = aL(v,u)
P3: L(u,u) =u
P4: L(u, v) = 0, if u and v have opposite signs,

otherwise L(u,v) has the same sign.

LED schemes can also be made ELED by modify-
ing the limiter L. In particular, the following limiter
is used in the current implementation.

where

D(u,v) = 1- u — v
|u| + |v| + eAzr

(11)

(12)

with r = |, and 9 = 3. Ax = -jfa, e = AVA * ure/,
where

{ pre/ for the mass equation
PrefVref for the momentum equations
prefHref for the energy equation

(13)
The reference point is taken to be the sonic point for
given stagnation pressure po and stagnation temper-
ature T0.

Pref =
Po

7+1

3.2 The CUSP Splitting
The schemes discussed in Section 3.1 tell us how
to construct difference terms for scalar conservation
laws, where otj+i in Equation (10) is half of the wave
speed. For systems of equations, strictly speaking,
we need to decompose the original conservation laws
into 5 individual wave equations each having its own
wave speed and then apply the schemes discussed in
Section 3.1. Characteristic decomposition, however,
is costly. A simple but effective flux splitting based
on the H-CUSP scheme in [5] is given below.

Consider the 1-D Euler equations

dw df(w)
dt dx

where

/= puu + p
pul

(14)

(15)

(16)

where / is the specific total energy if the absolute
reference frame is used. When a rotational reference
frame is used as in many turbomachinery codes / is
taken to be the rothalpy in the rotational reference
frame.

A CUSP scheme splits / into a convective flux fc
and a pressure flux fp.

fc = U I pU I = UW( (17)

(18)

Dissipation fluxes are then formed separately for
fc and fp by using the method in Section 3.1. Thus

where for a 1st order scheme

The dissipation coefficients are designed to give ap-
propriate upwinding for both the convective fluxes
and the pressure fluxes.

\M\
for

for

a2 = - - 2o0
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1
04 = Ofl - -

where GO is used to control the minimum convective
diffusion at points where the convective velocity is
zero. Normally it is taken as j.

, f |M(3 - M2) for |M| < 1
j^M)- <. ,M) for |M|>1

Notice that a smooth function for h(M) is used here
instead of the piecewise-continuous function given in
[5].

Second order CUSP schemes can be easily formed
with the SLIP scheme discussed in Section 3.1. To
form a 2nd order CUSP scheme with SLIP, care must
be taken in calculating the pressure differences to
maintain consistency with other flow variables. This
is achieved by forming a left and a right state at
each grid interface by interpolating wc using SLIP
limited slopes. Pressures at these two states are then
calculated and their difference formed to provide the
higher order pressure diffusion term [5].

4 Results and Discussions
The CUSP scheme has been validated on a num-
ber of theoretical and practical cases at ABB power
generation. Due to its increased accuracy and ro-
bustness, the CUSP scheme is now used as the de-
fault option in the new code. In this paper, we will
first present inviscid results for a simple supersonic
wedge cascade and then focus on the performance of
the scheme on a three-dimensional turbine vane.

4.1 Supersonic Flow through a
Wedge Cascade

Denton [8] proposed a wedge cascade as a test case
for capturing oblique shocks with an Euler method.
Fig. 1 shows the profiles of the cascade and the Mach
number contours calculated by using the baseline
code with JST scheme. The inlet Mach number of
this cascade is 2. The shock reflected from the lower
blade is designed to be exactly cancelled out at the
corner of the upper blade, giving a uniform flow be-
tween the parallel surfaces and an expansion off the
downstream corner. This design gives a good test
case for numerical methods for the Euler equations
since an exact solution is available analytically. Nu-
merical smearing may prevent complete cancellation
of the reflected shock, and thus produce a nonuni-
form region downstream. This test case is used here
to demonstrate the better resolution of shock and
expansion waves provided by the new CUSP scheme.

Figure 1,2, and 3 show the computed Mach num-
ber contours, the pressure and Mach number distri-
bution on the blade surface by the baseline code with

the JST scheme. Figure 4, 5, and 6 show the cor-
responding results by using the new CUSP scheme.
These figures clearly show sharper and less oscilla-
tory solutions by the new scheme compared to the
baseline code across the shock and expansion waves.
Of much significance is the Mach number recovery
through the expansion fan at the second corner of
the blade. Previous calculations, including the one
by Denton himself, showed that the largest discrep-
ancy between numerical results and the analytical
solution is around the downstream corner where a
cluster of expansion waves accelerate the flow to a
Mach number a little higher than 2. Large entropy
increase is observed behind the expansion waves in
the near wall region resulting in a lower Mach num-
ber on the blade surface compared to the analytic
solution. This can be seen in Figures 1 and 3. Fig-
ures 4 and 6 show clearly that the CUSP scheme
significantly reduces this error.

Jameson in [5] gave proof for the conditions of a
numerical scheme for obtaining single point shock
waves. He also presented a variation of the CUSP
scheme that satisfies the given conditions. It must
be noted that the CUSP scheme implemented in the
current studies neglected the ^fiwh&u term given
in [5] that is needed to satisfy the one-point shock
conditions. In addition, such conditions are based on
one-dimensional analysis. The above computation
does not show a one-point shock structure for the
oblique supersonic-to-supersonic shock waves.

4.2 Flow through a Turbine Vane
In this section, we will examine in detail the compu-
tation of a turbine vane originally provided in a one
and a half stage test case openly available within the
framework of the ERCOFTAC workshop[9]. The 3-
row configuration was experimentally investigated
at the University of Aachen where measurements
behind the first vane, the first stage and the full
configuration were taken. Emunds, Jennions, Bonn,
and Gier presented an exhaustive discussion on the
detailed flow mechanism through this 1.5 stage. In
this paper, we will restrict ourselves to the vane cal-
culations only. In particular, we will examine the
the performance of the CUSP scheme on the predic-
tion of losses on a relatively coarse grid with wall
functions.

In most production-mode calculations, relatively
coarse grids are used which often do not allow in-
tegration of the boundary layer to the wall. Typi-
cal y+ of the first grid point[10] from the wall may
range from the tens to the hundreds. Consequently,
wall functions are used to obtain the shear stress
on the wall instead of by direct calculation based
on finite-differencing on the coarse grid. Figure 7
shows such a grid generated for the Aachen vane
blade to be used in the current study. The grid con-
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sists of 129 x 37 x 49 points. We start with the JST
scheme and will focus on the spanwise distribution of
the circumferentially-averaged total pressure. The
figures shown in the following paragraphs present
spanwise distributions of the average total pressure
at the inlet to the turbine, a station 8 grid points
ahead of the turbine Trailing Edge (TE), and a sta-
tion 8.8mm downstream of the TE. We will refer to
the latter two stations as Station 1 and Station 2,
respectively. The inlet stagnation pressure, stagna-
tion temperature, and flow angles are given based on
the experiments and are identical to those used by
Emunds, Jennions, Bohn and Gier[10]. The exper-
imental data shown in the figures are measured at
the station 8.8mm downstream of the turbine TE.

Figure 8 shows the result with the original JST
scheme running in Euler mode. Emunds, Jennions,
Bohn, and Gier point out that the two total pressure
peaks near the hub and casing are due to secondary
flow vortices generated in the blade passage with
the specified inlet boudary layer profile. Although
an Euler calculation does not include the physical
viscous effects, it is capable of resolving the passage
vortex generation provided the inlet boundary layer
is specified and there are sufficient number of grid
points to resolve this boundary layer. As shown in
Figure 8, the Euler calculation indeed mimics the
secondary flow features. The peaks of total pressure
are clearly seen in the computed results at both Sta-
tion 1 and Station 2. In principle, there should be no
total pressure loss in an Euler calculation for a sub-
sonic case. We can see that the total pressure level at
Station 1 right before the blade trailing edge is very
close to that given at the inlet, showing that there is
very little numerical contamination of the solution
up till this station. The computed total pressure
at Station 2 downstream of the trailing edge, how-
ever, shows a significant pressure loss which should
not exist in an Euler solution. This is due to the fact
that we used a blund trailing edge model in the grid.
An Euler calculation can not really support such a
blunt trailing edge. Numerical dissipation become
effective in the trailing edge area, causing the ob-
served total pressure loss at Station 2. Since there
is effectively no profile loss, the computed total pres-
sure at Station 2 is still higher than the experimental
data.

Figure 9 shows the result with the original JST
scheme running full Navier-Stokes for this case. Fig-
ure 10 is the convergence history with a 3 level
multigrid for this case. Notice that the residual
level tends to hang after a reduction of 2-3 orders
of magnitude. In order to make the computation
further converge, we freeze the turbulence eddy vis-
cosity calculated by the Baldwin-Lomax model at
this time. After doing this, it can be seen that
the computation continues to converge towards ma-
chine zero (only single precision calculation is used

in this study). Although the computation has con-
verged, Figure 9 shows that the computed average
total pressure deviates very much from the experi-
mental data. In particular, the computed result ex-
hibits large overshoot peaks near the hub and cas-
ing. These peaks are non-physical and are due to the
fact that the grid is rather coarse. It is well-known
that a central-difference type scheme will produce
oscilations within a sharp boundary layer where the
no-slip boundary condition is applied when the cell
Reynolds number is too high. Notice, in this case
the switched JST scheme adds no second-order dis-
sipation because there is effectively no pressure gra-
dient within the boundary layer. The overall total
pressure levels seem to be even higher than those
predicted by the Euler calculations. This is due to
the fact that there is also artificial overshoot of total
pressure near the blade surfaces, resulting in higher
circumferentially averaged total pressures.

To confirm the above argument, we repeated the
Navier-Stokes calculations on a fine grid with 129 x
49 x 81 grid points and with more grid clustering
near the wall. The result is shown in Figure 11.
This time, we see the computational result no longer
exhibit the numerical overshoot, and it agrees with
the experimental data very well.

The above results show that the original JST
scheme with a switched sensor may not be reliable
for viscous flows on coarse grids. We now turn our
attention to the CUSP scheme. Figure 12 shows
the Euler result for the same case with the CUSP
scheme. Clearly, the CUSP scheme predicts essen-
tially the same total pressure behavior as the JST
scheme for the Euler calculations. Figure 13 shows
the result of Navier-Stokes calculations with CUSP.
Unlike the JST scheme, the CUSP scheme does not
exhibit the artificial total pressure overshoots near
the walls. The computed total pressure levels also
agree well with the experimental data at Station 2
including the secondary flow features near the end
walls. The total pressure at Station 1 is now less
than that predicted by the Euler calculations. This
is due to the profile loss predicted in the Navier-
Stokes code. The difference of total pressure be-
tween Station 1 and Station 2 is due to the trailing
edge loss which now may be regarded to be more or
less physical since the physical viscosity is included
and it is significant in that region although it is de-
batable whether the computation is fully resolving
the trailing edge. Because of the coarse grid used
near the trailing edge, numerical dissipation may
still be significant there which functions to add some
numerical total pressure loss. Nevertheless, the com-
puation does seem to model the physical loss closely
with the CUSP scheme on this relatively coarse grid.

Notice that in order to predict the profile loss on
a coarse grid where direct integration of the tur-
bulent boundary layer to the wall is not possible,
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one has to use a wall function to obtain the correct
shear stress on the wall. To confirm this, we run the
Navier-Stokes code by turning off the wall function
and calculate the wall shear stress directly by dif-
ferentiating the velocity profiles on the coarse grid.
The result is shown in Figure 14. It can be seen
that in this case, the total pressure at Station 1 be-
fore the blade TE is now almost at the same level as
that predicted by the Euler code. Without the wall
function, the shear stress is grossly underpredicted
on the coarse grid resulting in little profile loss even
though the no-slip boundary condition is used.

Figure 15 shows the convergence history of the
Navier-Stokes computation for the Aachen vane with
the CUSP scheme. It can be seen that the compu-
tation exhibits the same level of convergence rate
as that for JST scheme. The above results show
that the CUSP scheme provides an accurate, reliable
method for solving turbulent viscous flows without
compromising efficiency, even on coarse grids pro-
vided the wall function is used.

5 Concluding remarks
An artificial dissipation scheme based on the con-
cepts of SLIP and CUSP is implemented in a three-
dimensional Navier-Stokes code for turbomachinery
flow calculations. Comparisons of the computational
results by the CUSP scheme with those by the clas-
sical JST scalar dissipation scheme show that the
CUSP scheme provides better accuracy of shock
waves and boundary layers than the JST scheme
while retaining the same computational efficiency.
The CUSP scheme is capable of providing reason-
ably good estimate of turbomachinery losses on rel-
atively coarse grid with the use of wall functions
while the classical JST scheme tends to give over-
shoot of total pressure near sharp boundary layers
when the grid is not fine enough.
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Figure 1: Calculated Mach number contour through
a supersonic wedge cascade with JST scheme Figure 3: Calculated Mach number distribution over

a supersonic wedge cascade with JST scheme
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Figure 2: Calculated pressure distribution over a
supersonic wedge cascade with JST scheme Figure 4: Calculated Mach number contour through

a supersonic wedge cascade with CUSP scheme



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

s3

+ Computed Upper surface
x Computed Lower surface

—— Analytic

Figure 5: Calculated pressure distribution over a
supersonic wedge cascade with CUSP scheme
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Figure 7: Computational grid for the Aachen vane

Figure 6: Calculated Mach number distribution over
a supersonic wedge cascade with CUSP scheme
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Figure 8: Spanwise distribution of circumferentially
averaged total pressure obtained by Euler calcula-
tion with JST
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Figure 9: Spanwise distribution of circumferentially
averaged total pressure obtained by Navier-Stokes
calculation with JST

Figure 11: Spanwise distribution of circumferen-
tially averaged total pressure obtained by Navier-
Stokes calculation on a fine grid with JST
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Figure 10: Convergence history for the Navier-
Stokes calculation with JST
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Figure 12: Spanwise distribution of circumferen-
tially averaged total pressure obtained by Euler cal-
culation with CUSP
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Figure 13: Spanwise distribution of circumferen-
tially averaged total pressure obtained by Navier-
Stokes calculation with CUSP and use of wall func-
tion
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Figure 14: Spanwise distribution of circumferen-
tially averaged total pressure obtained by Navier-
Stokes calculation with CUSP and no use of wall
function
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Figure 15: Convergence history for the Navier-
Stokes calculation with CUSP
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