

现代施工技术 外脚手架设计计算

扣件钢管脚手架设计计算

- 1.荷载
 - (1)作用于脚手架上的荷载:

永久荷载——脚手架自重(立杆、水平杆、剪刀撑及扣件)、构配件自重(脚手板、栏杆、挡脚板及安全网)

可变荷载——施工荷载(作业层上人员、器具和材料自重),风荷载

(2)荷载标准值

永久荷载标准值按每米立杆承受的结构自重标准值,查表 采用或自行计算;

可变荷载中的施工荷载

类 别	标准值(kN/m²)
装修脚手架	2
结构脚手架	3

可变荷载中的水平风荷载标准值:

$$\omega_k = 0.7 \mu_z \cdot \mu_s \cdot \omega_0$$

式中 $\omega_{\mathbf{k}}$ ——风荷载标准值($\mathbf{kN/m}^2$);

μ_z——风压高度变化系数,按《建筑结构荷载规范》 (GBJ9)规定采用;

μ_s——脚手架风荷载体型系数

 ω_0 ——基本风压(kN/m^2),按《建筑结构荷载规范》 (GBJ9)规定采用。

在风荷载体型系数中,可将脚手架视为钢管桁架。

(3)荷载效应组合

计算项目	荷载效应组合
纵向、横向水平杆强度与变形	永久荷载+施工均布活荷载
脚手架立杆稳定	永久荷载+施工均布活荷载
脚手架立杆稳定	永久荷载+0.85(施工均布活荷载+风荷载)
连墙件承载力	单排架,风荷载+3.0kN 双排架,风荷载+5.0kN

2.设计计算

(1)脚手架设计计算的基本内容

纵向、横向水平杆等受弯构件的强度和连接扣件的抗 滑承载力计算;

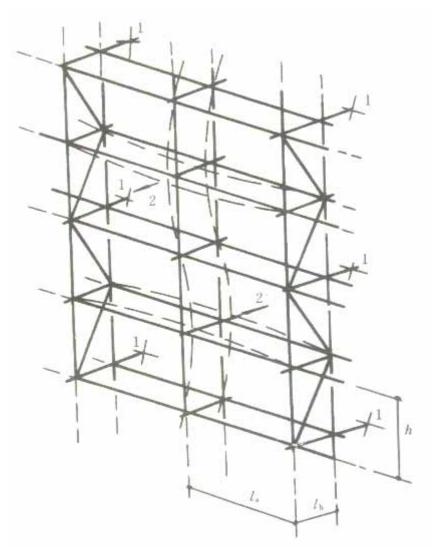
立杆的稳定性计算;

连墙件的强度、稳定性和连接强度的计算;

立杆地基承载力计算。

(2)扣件的承载力设计值

项目	承载力设计值(KN)	
对接扣件(抗滑)	3.20	
直角扣件、旋转扣件(抗滑)	8.00	


(3)脚手架立杆稳定计算 不组合风荷载时:

$$\frac{N}{\varphi A} \le f$$

组合风荷载时

$$\frac{N}{\varphi A} + \frac{M_W}{W} \le f$$

N——计算立杆轴向力设计值 ϕ ——轴心受压构件的稳定系数 λ ——长细比 , λ = I_0 /i

计算立杆段轴向力设计值

不组合风荷载时:

 $N=1.2(NG_{1k}+NG_{2k})+1.4$ N_{Ok}

组合风荷载时:

 $N=1.2(NG_{1k}+NG_{2k})+0.85\times1.4$ N_{Qk} 式中 NG_{1k} ——脚手架结构自重标准值产生的轴向力; NG_{2k} ——构配件自重标准值产生的轴向力; N_{Qk} ——施工荷载标准值产生的轴向力总和,内、 外立杆可按一纵距(跨)内施工荷载总和 的1/2取值。

立杆计算长度 $I_0 = k\mu h$

k——计算长度附加系数,其值取1.155;

μ——考虑脚手架整体稳定因素的单杆计算长度系数

表 5.3.3

脚手架立杆的计算长度系数 μ

类 别 立杆横距 (m)	立杆横距	连墙件布置	
	二步三跨	三步三跨	
双排架	1.05	1.50	1.70
	1.30	1.55	1.75
	1.55	1.60	1.80
单排架	≤1.50	1.80	2.00

碗扣式钢管脚手架设计计算

- 1.受力特点
- (1)水平杆与立杆的连接采用独特的碗扣,下碗扣焊接于立柱上,其抗滑抗剪能力高于可锻铸铁扣件;
 - (2)碗扣件对横杆的转动约束能力低于铸铁扣件;
- (3)经试验,碗扣架立柱的受力特点类似于两端铰接的轴心受压杆。
 - 2.立杆的允许荷载

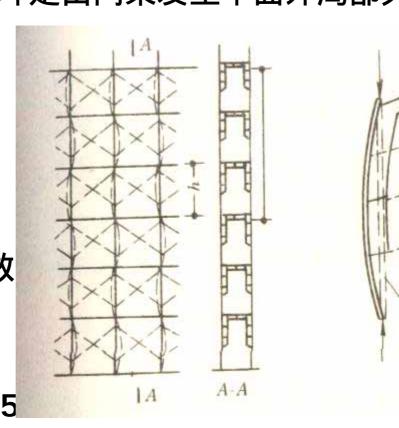
立杆步距 (m)	立杆允许荷载 (kN/根)
0.6	40.0
1.2	30.0
1.8	25.0
2.4	20.0

门式钢管脚手架设计计算

- 1.受力特点
- (1) 门式钢管脚手架的承载力决定于单榀门架;
 - (2) 脚手架的破坏是由门架发生平面外局部失稳引起。
- 2.立杆的承载力 可按两端铰接的、

等截面轴心受压构件 计算其稳定性。

N kφAf


k-_材料强度调整系数

脚手架高度

30m, k=0.8

 $31 \sim 45 \text{m}$, k=0.75

 $46 \sim 60 \text{m}$, k = 0.7

