

Food Scien	ce and Technology FSTI	Inter	national,	, Tok
Available Issues Jap	anese			
Author:	ADVAN	NCED	Volume	Page
Keyword:	Sear	ch		
	Add to Favorite/Citation Articles Alerts	đ	Add to Favorite Publication	ns Ĉ

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

Food Science and Technology International, Tokyo

Vol. 3 (1997), No. 2 pp.101-104

Diffusion-Controlled Change in Bubbles Impregnate Solutions

<u>Kuniko SUGIYAMA¹⁾ and Toshimasa YANO²⁾</u>

1) Kanto Gakuin Women's Junior College

2) Department of Bioengineering, Yokohama National Universa

(Received: July 11, 1996)

The applicabilities of Epstein and Plesset's theory and Lemlich's the bubble-size distribution under a constant temperature were studied in homogeneous viscous solutions. The numerical calculation basec theory that took into account the change in the dissolved air concen surrounding solution agreed well with the measured results, while E theory, which assumed the dissolved air concentration in the surrou constant, and Lemlich's theory, did not fit the measured results.

Keywords: air bubble, bubble-size distribution, viscous solution

[PDF (439K)] [References]

Downlo

To cite this article: Kuniko SUGIYAMA and Toshimasa YANO, **Diffusion-Control Impregnated in Viscous Solutions** *FSTI*. Vol. **3**, 101-104. (199

doi:10.3136/fsti9596t9798.3.101 JOI JST.JSTAGE/fsti9596t9798/3.101