

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

us

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

R. Kováčová, A. Synytsya, J. Štětina:

Whey Proteins— Pectin Interaction in Relation to Emulsifying Properties of Whey Proteins

Czech J. Food Sci., 27 (2009): S4-S8

The aim of this work was to characterise influence of whey proteins—pectin interaction on emulsification properties of whey. As the first, structural characteristics of pectin-protein complexes were evaluated for pure βlactoglobulin by both dynamic light scattering method for measuring of the particle size distributions and Doppler laser electrophoresis for measuring the ξpotential (surface electrical potential) of particles. In mixed pectin-β--lactoglobulin systems, it was observed that the addition of pectin prevent from the protein-protein interaction, which caused production of huge protein aggregates (2000–2500 nm) at pH values near β--lactoglobulin isoelectric point and at temperatures near


these protei- pectin complexes had large hydrodynamic diameters (monomodal size distribution at 350 and 1000 nm for high esterified and low esterified amidated pectin, resp.), which can slow down their diffusion to the oil-water interface in emulsions. The &xi -potential values indicated improvement of colloid stability by addition of pectin. The evaluation of the influence of the protein—pectin interaction on emulsification properties was performed by the determination of a surface weighted mean (D [3,2]) of oil droplets in o/w emulsions measured by the laser diffraction, further by microscope observations, the determination of emulsion free oil content and observations of creaming. The emulsifying properties were influenced by the pectin addition, more negatively by the high esterified than by the low esterified amidated pectin addition.

Keywords:

whey proteins; pectins; dynamic light scattering; &xi -potential; emulsion; particle size distribution; free oil

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

