

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Galus S., Turska A., Lenart A.:

Sorption and wetting properties of pectin edible films

Czech J. Food Sci., 30 (2012): 446-455

The water vapour sorption kinetics and isotherms of pectin films prepared by the casting method were determined. The measurement of water vapour sorption kinetics was conducted using a saturated sodium chloride solution to obtain constant relative humidity of the environment (75.3%). The measurement was carried out at the temperature of 25° C over a 24 h period. The water vapour adsorption rate was the highest in the first hours of the process. The exponential equation fitted well the experimental data of water vapour adsorption with time. Glycerol concentration in the analysed films affected the increasing water vapour adsorption. The water vapour sorption isotherms were analysed using the saturated salt solutions with water activity from 0.113 to 0.901 for 3 months at 25° C. The sorption isotherms curves had a sigmoidal shape for all films. Glycerol

during 3 months. Peleg's equation was appropriate for the mathematical description of the sorption isotherms. The microstructure of pectin films showed different internal arrangement as a function of the film composition.

Keywords:

pectin films; glycerol; sorption isotherms and kinetics

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

XHTML1.1 VALID

