

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

us

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

V. Spěváčková, I. Hrádková, M. Ebrtová,

Lipid Oxidation in Dispersive Systems with Monoacylglycerols

Czech J. Food Sci., 27 (2009): S169-S172

Model fat blends with a monoacylglycerol emulsifier with different acyl chain (C10, C12, C14, C16, C18, C18:1, C20, C22) were prepared and stored under oxygen atmosphere 8 weeks at temperature 20° C. Influence of monoacylglycerol on oxidation and oxidation stability of the model fat blends was studied. The model fat blends were prepared by mixing of fully hydrogenated structured fats that contained only palmitic and stearic acid (fully hydrogenated zero-erucic rapeseed oil and fully hydrogenated palmstearin) and half-refined soybean oil. Lipid oxidation was measured by determination of the peroxide value. Volatile oxidation products were detected by the solid phase microextraction in connection with gas chromatography-mass detector

(SPME/GC-MS). The oxidative stability was measured by the Rancimat method. Lipid oxidation in model system with 1-octadecenoylglycerol (MAG18:1) was the most extended. On the other hand minimal lipid oxidation was found out in the presence of 1-tetradecanoylglycerol (MAG14) and 1-hexadecanoylglycerol (MAG16).

Keywords:

lipid oxidation; fat blend; emulsifier; monoacylglycerol

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

