

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

Wang w., Li Z., Liu J.-Z., Wang Y.-J., Liu S.-

II., Juli Wi..

Comparison between thermal hydrolysis and enzymatic proteolysis processes for the preparation of tilapia skin collagen hydrolysates

Czech J. Food Sci., 31 (2013): 1-4

The tilapia (Oreochromis niloticus) skin hydrolysate was produced by thermal or enzymatic hydrolysis processes. Several product characteristics were studied such as the average molecular weight, 2,2diphenyl-1-picrylhydrazyl radicalscavenging activity, yield, and protein content, in order to compare thermal hydrolysis and enzymatic proteolysis processes for the hydrolysed tilapia skin collagen production. The effects of the following hydrolysis parameters (retorting time and pH, protease combination, and proteolysis time) were studied. Compared with the thermal hydrolysis process, the

enzymatic proteolysis process needed less time and milder conditions, under which hydrolysates could be obtained as low molecular weight antioxidant peptides.

Keywords:

fish skin gelatin; hydrolysate; antioxidant activity; autoclaving; proteases

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

