

Agricultural Journals

Czech Journal of

FOOD SCIENCES

home page about us contact

US

Table of Contents

IN PRESS

CJFS 2014

CJFS 2013

CJFS 2012

CJFS 2011

CJFS 2010

CJFS 2009

CJFS 2008

CJFS 2007

CJFS 2006

CJFS 2005

CJFS 2004

CJFS 2003

CJFS 2002

CJFS 2001

CJFS Home

Editorial Board

For Authors

- AuthorsDeclaration
- Instruction to Authors
- Guide for Authors
- CopyrightStatement
- Submission

For Reviewers

- Guide for Reviewers
- ReviewersLogin

Subscription

Czech J. Food Sci.

R. Fabiani, P. Rosignoli, R. Fuccelli,

Bartolomeo, G.
Morozzi:
Involvement of
Hydrogen Peroxide
Formation on
Apoptosis Induction
by Olive Oil Phenolic
Compounds

Czech J. Food Sci., 27 (2009): S197-S199

In the present investigation the ability of different phenolic compounds, either present or not in olive oil, to induce both apoptosis on tumour cells and H₂O₂

accumulation in cell culture medium was assesed. Among the phenols studied we found that tyrosol (*p*-HPEA), homovanillic alcohol and protocatechuic, *o*-coumaric, vanillic, homovanillic, ferulic and syringic acids did not induce either apoptosis on HL60 cells or H₂O₂ accumulation, while

hydroxytyrosol (3,4-DHPEA), 3,4-

dihydroxyphenylacetic acid (3,4-DHPA), 3,4-dihydroxy-hydrocinnamic acid (3,4-DHHC) and gallic acid induced both apoptosis and accumulation of H2O2 in the culture medium which were significantly reduced by catalase. In contrast, the dialdehydic form of elenoic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) and to tyrosol (p-DHPEA-EDA) induced high level of apoptosis not reduced by catalase. Finally, oleuropein exerted a weak pro-apoptotic effect not mediated by H₂O₂ release. From these results it is evident that: (1) the cathecol moiety of phenols is necessary but not sufficient to induce apoptosis and H2O2 accumulation; (ii) the 3,4-DHPEA metabolism may partially reduce its proapoptotic potential; (iii) the pro-apoptotic activity of 3,4-DHPEA-EDA and p-DHPEA-EDA is not mediated by H₂O₂ releasing activity.

Keywords:

olive oil; phenols; apoptosis; hydrogen peroxide

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

