研究论文

SO₂气体对质子交换膜燃料电池阴极性能的影响

杨代军1,2, 马建新1,3, 马晓伟3, 周伟1,3, 徐麟4, 邬敏忠4, 万钢1

- 1. 同济大学新能源汽车工程中心, 上海 201804;
- 2. 华东理工大学资源与环境工程学院, 上海 200237;
- 3. 同济大学汽车学院氢能技术研究所,
- 4. 上海燃料电池动力系统有限公司, 上海 201804

收稿日期 2006-6-9 修回日期 网络版发布日期 2007-4-7 接受日期

摘要 将 5×10^{-8} ~ 3.2×10^{-6} (空气中的体积含量)的 SO_2 通入质子交换膜燃料电池(PEMFC)单电池阴极, 研究了 SO_2 对PEMFC性能的影响. 实验得到的电压-时间(V-t)曲线和极化(V-t)曲线表明, 空气中 SO_2 含量达到 5×10^{-7} 时, 将对PEMFC的性能产生显著的和不可逆的影响, 且 SO_2 浓度越大电池性能的下降幅度越大. 对 SO_2 影响前后的电化学交流阻抗谱(EIS)的解析表明, 电池电荷传递阻抗(R_{ct})的变化可逆, 而阴极的表面状态发生了不完全可逆的变化. 循环伏安(CV)实验数据进一步证明, SO_2 毒化后阴极的活性电化学表面积(EAS)缩小.

关键词 质子交换膜燃料电池 阴极 二氧化硫

分类号 0646 TM911.4

Effects of SO₂ on Cathode Performance of Proton Exchang e Membrane Fuel Cell

YANG Dai-Jun 1,2 , MA Jian-Xin 1,3 *, MA Xiao-Wei 3 , ZHOU Wei 1,3 , XU Lin 4 , WU Min-Z hong 4 , WAN Gang 1

- Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201 804, China;
- 2. School of Resource & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China;
- 3. Institute for Hydrogen Technologies, School for Automotive Studies, Tongji U niversity,
- 4. Shanghai Fuel Cell Powertrain System Co. Ltd., Shanghai 201804, China

Abstract SO_2 with volume fractions from 5×10^{-8} to 3.2×10^{-6} was introduced into the cathode of a single Proton Exchange Membrane Fuel Cell(PEMFC) to investigate the effect of SO_2 on the performance of the PEMFC. Voltage-time(V-t) curve and polarization(V-t) curves show that 5×10^{-7} SO_2 can cause significant and irreversible effect on the cell performance, and the performance decay increases with SO_2 volume fraction increasing. Using electrochemical impedance spectroscopy(EIS), it was found that after being poisoned by 5×10^{-7} SO_2 for 130 h, the charge transfer resistance(R_{ct}) was reversible after cathode purging for 20 h and cyclic voltammetry (CV) test, however the surface state of the cathode was permanently changed. A reduction of the electrochemical active surface(EAS) of the cathode, which contributed to the irreversible cell performance decay, was confirmed by cyclic voltammograms.

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(445KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含"质子交换膜燃料电池"的 相关文<u>章</u>

▶本文作者相关文章

- 杨代军
- •
- · <u></u> 马建新
- ・ 马晓伟
- · 周伟
- 徐麟
- 邬敏忠
 - 万钢

Key words	Proton exchange membrane fuel cell(PEMFC)	Cathode	Sulfur dioxide

DOI:

通讯作者 马建新 jxma@fcv-sh.cn