O 2存在下NO在固体电解质电池上分解机理

王新平,赵沁,蔡天锡

大连理工大学化工学院,大连(116012)

收稿日期 修回日期 网络版发布日期 接受日期

摘要 研究了在O_2存在条件下,NO在Pd |YSZ| Pd固体电解质电池和RuO_2 |Pd|YSZ|

Pd固体电解质电池上的分解性质,在 O_2 存在条件下 $650\sim700$ ℃之间 ,在 $0\sim4.4$ V直流电压作用下,

NO在Pd |YSZ| Pd电池和RuO_2|Pd|YSZ| Pd电池 上的分解不以电解机制进行,而以电催化机理进行的。即在直流电压下,阴极催化 剂上的O~(2-)

被直流电压通过YSZ固体电解质转移到阳极,以O_2的形式放出,以此 保持催化剂的活性状态。在Pd|YSZ|Pd 固体电解质电池上,Pd金属表面是催化NO分 解的主要活性位。RuO_2 |Pd|YSZ| Pd固体电解质电池上,

某特定还原态的RuO_x (0 < x < 2)是NO分解的主要活性位。在O_2存在下,该电池在1 ~ 4 V间合适的电 压下,在650 ~ 700 \mathbb{C} 能选择性地对NO进行电催化分解。

关键词 电催化 一氧化氮 分解 电解质 氧化钌 铂 电解

分类号 0646

The Mechanism of NO Decomposition on the Solid Electrolyte Cell in the Presence of O 2

Wang Xinping, Zhao Qin, Cai Tianxi

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian (116012)

Abstract The properties of RuO_2 |YSZ| Pd cell and Pd |YSZ| for NO decomposition in the presence of O_2 were studied. The results have proved that, the NO was decomposed via the electrocatalysis mechanism other than electrolysis mechanism at the reaction temperature between 650 \sim 700 $^{\circ}$ C on the both cells at applied voltages in the range of 1 \sim 4 V. Namely, the O~(2-) produced from NO decomposition and ionization of O_2 on the surface of the cathode was

transported through YSZ to the anode by DC voltage and then given off in the form of O_2 so as to maintain the active states of the cathode and the catalyst being coated on the cathode. On the Pd |YSZ| Pd cell, the palladium metal surface is the active site for NO decomposition and on the RuO_2 |Pd|YSZ| Pd cell, the partially reduced RuO_x (0 < x < 2) is the main active site for NO decomposition. In the reaction temperature range of 650 \sim 700 °C, NO is selectively decomposed in the presence of O_2 at suitable voltages between 0 V and 4 V on the RuO_2 |Pd|YSZ| Pd cell.

Key wordsELECTRO-CATALYSISNODECOMPOSITIONELECTROLYTERUTHENIUM OXIDEPLATINUMELECTROLYSIS

DOI:

通讯作者

扩展功能

本文信息

- ► Supporting info
- ▶ **PDF**(0KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- Email Alert
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"电催化"的</u> 相关文章
- ▶本文作者相关文章
- 王新平
- 赵沁
- 蔡天锡