催化、动力学与反应器

Pt-Sn-Li/Al₂O₃/FeCrAl催化剂的制备、表征和长链烷烃脱氢催化性

卢泽湘,周忠良,银凤翔,季生福,刘辉,李成岳

北京化工大学化工资源有效利用国家重点实验室

收稿日期 2007-2-2 修回日期 2007-5-24 网络版发布日期 2008-1-14 接受日期

摘要

以FeCrAl合金薄片为基体,Pt-Sn-Li/γ-Al₂O₃为活性涂层,制备了Pt-Sn-Li/Al₂O₃/FeCrAl金属基复合载体负载型 催化剂。采用XRD、SEM、TPR等手段对催化剂进行了表征,并在微型固定床反应器中考察了不同反应温度、液时空 速和氢/烃摩尔比下对长链烷烃脱氢的催化性能。结果表明,将活性浆料直接涂覆于焙烧后的金属薄片上制得的催<mark>▶Email Alert</mark> 化剂有良好的结合性能,经超声波振荡后涂层脱落率小于2%。当Pt-Sn-Li/γ-Al₂0₃活性涂层涂覆到FeCrAl金属基 体后复合载体Al₂0₃/FeCrAl与活性成分的相互作用明显增强。催化反应性能评价表明,较高的反应温度有利于长 链烷烃脱氢过程,但温度过高时将加速催化剂积炭失活。较低的空速有利于十二烷的转化,但进一步减小空速将 造成十二烯的选择性明显降低。减小氢/烃摩尔比虽然有利于提高十二烷的转化率,但进一步减小氢/烃摩尔比也 将加速催化剂积炭失活。

关键词

Pt-Sn-Li/Al₂O₂/FeCrAl催化剂 金属基载体 长链烷烃(十二烷) 脱氢 表征

分类号

Preparation and characterization of Pt-Sn-Li/Al₂O₃/FeCrAl catalyst and its catalytic performance for long chain alkane dehydrogenati

LU Zexiang, ZHOU Zhongliang, YIN Fengxiang, JI Shengfu, LIU Hui, LI Chengyue

Abstract

Pt-Sn-Li/Al₂O₃/FeCrAl catalyst was prepared by using FeCrAl alloy foil as the base of support and Pt-Sn-Li/γ-Al₂O₃ as the active coating. The catalyst was characterized by means of XRD, SEM, H₂-TPR. The effects of temperature, LHSV and the molar ratio of hydrogen to alkane on the catalytic performance for the long chain alkane dehydrogenation were investigated in a fixed-bed microreactor. The results indicated that the adhesiveness between support and active coating was very good, and only less than 2% coating was peeled off after ultrasonic vibration treatment. The interaction between Al₂O₃/FeCrAl metallic composite support and active components was strengthened distinctly, after the active coating was supported on FeCrAl alloy foil. A higher temperature benefited the dehydrogenation reaction, but an overly high temperature would accelerate the coking deactivation of catalyst. A lower LHSV benefited the conversion of the alkanes, but a further decrease of LHSV would reduce the selectivity of the alkenes. A lower molar ratio of hydrogen to alkane benefited the conversion of the alkanes, but similarly, a too low molar ratio of hydrogen to alkane would accelerate the catalyst deactivation by carbon deposition.

Key words

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(1284KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶<u>复</u>制索引
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含"

<u>Pt-Sn-Li/Al₂O₂/FeCrAl</u>催化剂"的 相关文章

▶本文作者相关文章

- 卢泽湘
- 周忠良
- 银凤翔
- 季生福
- 刘辉
- 李成岳

Pt-Sn-Li/Al₂O₃/FeCrAl catalyst metallic-based support long chain alkane (dodecane)

dehydrogenation characterization						
DOL						
DOI:						
通讯作者	李成岳 <u>licy@mail.buct.edu.cn</u>					
~ ntil 1	1 Main ney e man. ou cu					