REACTION KINETICS, CATALYSIS AND...

载体氧化铝的粒径对对硝基苯酚加氢催化剂Ni/Al₂O₃的影响 陈日志¹、杜艳²、邢卫红¹、徐南平¹

- ¹ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engi-neering, Nanjing University of Technology, Nanjing 210009, China
- ² College of Environmental Sciences, Nanjing University of Technology, Nanjing 210009, China 收稿日期 2007-6-22 修回日期 网络版发布日期 接受日期 2007-9-23

摘要 The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al203 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al203 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al203 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic ac-tivity of Ni/Al203 catalyst. The supported nickel catalyst 10.3Ni/Al203-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.

关键词 <u>p-nitrophenol</u> <u>catalytic hydrogenation</u> <u>p-aminophenol</u> <u>Ni/Al₂O₃ catalysts</u> <u>ceramic membrane filtration</u> 分类号

Effect of alumina particle size on Ni/Al₂O₃ catalysts for p-nitrophenol hydrogenation

CHEN Rizhi¹, DU Yan², XING Weihong¹, XU Nanping¹

- ¹ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engi-neering, Nanjing University of Technology, Nanjing 210009, China
- ² College of Environmental Sciences, Nanjing University of Technology, Nanjing 210009, China

Abstract

The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selectivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.

Key words <u>p-nitrophenol</u> <u>catalytic hydrogenation</u> <u>p-aminophenol</u> <u>Ni/Al2O3 catalysts</u> <u>ceramic membrane filtration</u>

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(210KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶ 文章反馈
- ▶ 浏览反馈信息

相关信息

▶ <u>本刊中 包含 "p-nitrophenol"的</u> 相关文章

▶本文作者相关文章

- 陈日志
- · 杜艳
- ・ 那卫红
- 徐南平