分离工程

改性活性炭脱除二氧化碳中的微量苯

李玉雪,张永春

大连理工大学精细化工国家重点实验室

收稿日期 2008-11-14 修回日期 2009-3-4 网络版发布日期 2009-6-17 接受日期

摘要 将工业废气中的C02回收利用,使之变废为宝具有重要的意义。研究了活性炭(AC)分别经湿氧化和N2还原改性后对苯吸附性能,并测定了改性活性炭的孔结构和表面官能团。结果表明,AC经N2还原改性能增大其比表面积,减少表面含氧官能团,增强其表面非极性,有利于苯的吸附。孔径分布是影响苯吸附的主要因素,吸附剂的孔径分布在0.6mm范围内时,有利于对苯的吸附。

关键词

活性炭 苯 吸附 湿氧化改性

分类号

Removal of trace amount of benzene from ${\rm CO_2}$ by adsorption with modified activated carbon

LI Yuxue, ZHANG Yongchun

Abstract

It is significant to recover CO_2 from industrial tail gases. Adsorption of low concentration benzene on activated carbon was studied. Activated carbon was treated with wet oxidized reagent and N_2 reduction. Pore structure of modified activated carbon was characterized by N_2 (77 K) adsorption isotherm. Boehm titration, Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface properties. N_2 reduction increased the surface area of AC and total pore volume, reduced the amount of surface groups and improved benzene adsorption. With CO_2 regeneration at 150 °C, the capability of activated carbon adsorbents had a little decrease at the beginning but remained unchanged with recycling. **Key words**

activated carbon benzene adsorption wet oxidation modification

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(1446KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含"

活性炭"的 相关文章

- ▶本文作者相关文章
- 李玉雪
- * 张永春