THERMODYNAMICS AND CHEMICAL.....

正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型

王斐^a, 汪文川^a, 黄世萍^a, 滕加伟^b, 谢在库^b

^a Laboratory of Material and Molecular Simulation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^b Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China

收稿日期 修回日期 网络版发布日期 接受日期

摘要 Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study. First, the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0-100kPa were measured using the intelligent gravimetric analyzer. The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites. Then, the double Langmuir (DL) model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1. By combining the DL model with the ideal adsorbed solution theory (IAST), the IAST-DL model was applied to model the butene-1 (1)/n-butane (2) binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios. The calculated results are in good agreement with the experimental data, indicating that the IAST-DL model is effective for the present systems. Finally, the adsorption over a wide range of variables was predicted at low pressure and 300K by the model proposed. It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio. A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.

关键词 <u>ZSM-5 zeolite</u> <u>n-butane</u> <u>butene-1</u> <u>adsorption isotherm</u> <u>Si/Al ratio</u> <u>selectivity</u> 分类号

DOI:

Experiment and modeling of pure and binary adsorption of n-butane and butene-1 on ZSM-5 zeolites with different Si/Al ratios

WANG Fei^a, WANG Wenchuan^a, HUANG Shiping^a, TENG Jiawei^b, XIE Zaiku^b

^a Laboratory of Material and Molecular Simulation, College of Chemical Engineering, Beijing

University of Chemical Technology, Beijing 100029, China

^b Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China

Received Revised Online Accepted

Abstract Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study. First, the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gravimetric analyzer. The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites. Then, the double Langmuir (DL) model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1. By combining the DL model with the ideal adsorbed solution theory (IAST), the IAST-DL model was applied to model the butene-1 (1)/n-butane (2) binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios. The calculated results are in good agreement with the experimental data, indicating that the IAST-DL model is effective for the present systems. Finally, the adsorption over a wide range of variables was predicted at low pressure and 300K by the model proposed. It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio. A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.

Key words ZSM-5 zeolite; n-butane; butene-1; adsorption isotherm; Si/Al ratio; selectivity

	扩展功能
	本文信息
	Supporting info
	▶ <u>PDF</u> (335KB)
ing	▶ [HTML全文](OKB)
	▶ <u>参考文献</u>
8,	服务与反馈
	▶ <u>把本文推荐给朋友</u>
C4	▶ <u>加入我的书架</u>
	▶ <u>加入引用管理器</u>
/sts at	▶ <u>引用本文</u>
	Email Alert
muir	▶ <u>文章反馈</u>
outane), the rption	▶ <u>浏览反馈信息</u>
	相关信息
nt t	▶ <u>本刊中 包含 "ZSM-5 zeolite"的</u> <u>相关文章</u>
vor	▶本文作者相关文章
vCI	· <u>王斐a</u>
N	・ <u>汪文川a</u>
	· <u>黄世萍a</u>
<u>y</u>	・膝加伟り

<u>脉加中D</u> 谢在库b

通讯作者:

王斐 <u>wangwc@mail.buct.edu.cn</u> 作者个人主页: 王斐^a; 汪文川^a; 黄世萍^a; 滕加伟^b; 谢在库^b