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ABSTRACT
We advance here a novel methodology for robust intelligent biometric information management with 

inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, 

adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt 

adversarial information, on one side, and image and or device variability, on the other side. The proposed 

methodology is model-free and non-parametric. It draws support from discriminative methods using 

likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and 

implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-

supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting 

the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled 

and unlabeled data; b) similarity metrics using regularity of patterns, randomness deficiency, and 

Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values; and c) the Cover 

– Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes 

error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data 

fusion including quality and multi-modal biometrics; 2) score normalization and revision theory; 3) face 

selection and tracking; and 4) identity management, are described here using an integrated approach that 

includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one 

side, and active learning and change/ outlier/intrusion detection realized using information gain and 

martingale, respectively, on the other side. The methodology proposed can be mapped to additional types 

of information beyond biometrics. 
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