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In this paper we propose a motion based approach for synthesizing dynamic textures. Dynamic
textures are natural phenomenon characterized by their distinctive motion patterns. Synthesis of
these textures is thus considered as the regeneration of a motion pattern that has identical motion
distribution of a source texture. In this paper we propose a synthesis technique where new textures
are generated by computing their movement pattern from a known motion distribution followed by
the generation of image frames. Experimental results demonstrate the ability of the proposed
technique by producing visually promising dynamic textures.
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1. INTRODUCTION 
A large class of objects commonly experienced in real world scenarios exhibit characteristic motion
with an indeterminate spatial and temporal extent. The motion assembly adopted by a flock of flying
birds, water streams, fluttering leaves, and waving flags are some of the most common examples
that serve to illustrate such motion. Contemporary literature coined the term “dynamic texture” to
collectively identify such motion patterns that exhibit spatiotemporal regularity but have an
indeterminate spatial and temporal extent.

Dynamic textures are image sequences with an inherent time dimension along with two spatial
dimensions. As a result, while pixel intensities play a direct role in image texture analysis, the
temporal cue of pixel intensities, namely motion, plays a similar role for analysing dynamic
textures. The dynamics of a dynamic texture is encoded by its motion distribution statistics and
many researchers (Polana and Nelson, 1992; Bouthemy and Fablet, 1998; Fablet et al, 2002; Fablet
and Bouthemy, 2003; Peh and Cheong, 1999; Péteri and Chetverikov, 2005; Péteri and Chetverikov,
2004; Fazekas and Chetverikov, 2007; Rahman and Murshed, 2007) have developed techniques to
characterize dynamic textures using a diverse set of features based on motion distribution. Although
motion based characterizations are commonly used for dynamic texture recognition, their appli-
cation for synthesizing such textures, is unexplored. In this paper, we explore the potential of motion
based dynamic texture characterization techniques to synthesize dynamic texture image sequences.
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Before elaborating on our achievements in this paper, let us briefly explain what we mean by
synthesis. Given the image sequence of an input dynamic texture T, we discover a generative model
M and we would like to generate an image sequence T’ from M, such that the texture of T’ looks as
realistic as T, but is not simply a copy of T. Often the width, height and number of frames in T’ will
differ from those in T. This definition of synthesis is commonly used in the current literature by a
group of techniques known as image based synthesis techniques.

The basic philosophy of our proposed synthesis method that will be explored in this paper is
presented in the framework in Figure 1. During learning, texture movement is identified by
computing motion vectors and the movement pattern within a texture is then encoded by motion
distribution statistics. Synthesis of new texture is performed in two steps. The motion frames of the
synthesized sequence are generated first using the a priori motion distribution statistics. The
sequence of image frames are then constructed from a seed image frame and synthesized motion
frames using guidelines of the motion vectors and local properties of dynamic textures. We have
explored each of the key steps of the abovementioned synthesis framework in this paper. We have
synthesized a diverse set of dynamic textures and experimental results that demonstrate the ability
of the proposed technique by producing visually promising dynamic textures.

The paper is organized as follows. Some works related to different steps of our proposed
synthesis technique are presented in Section 2. Each of the key steps of our proposed synthesis
technique is elaborated in Section 3. In Section 4 we present some experimental results and Section
5 concludes the paper.

2. RELATED WORKS
In this section we explore a set of existing works relevant to the key steps of our proposed
framework in order to choose suitable mechanisms to carry out the synthesis steps. Motion
distribution statistics are necessary for regenerating the motion frames effectively and we discuss
some existing motion characterization techniques in Section 2.1 to find a suitable motion
distribution. Regeneration of image frames requires guidelines from motion vectors, and a review
of some existing motion estimation algorithms is presented in Section 2.2. Production of synthetic
textures has long been a goal of computer graphics and there exists a number of works in the current
literature for synthesizing dynamic textures. Although our main focus in this paper is to synthesize
dynamic textures using a suitable motion based characterization technique, a brief review of
existing synthesis techniques is presented in Section 2.3 for the sake of completeness.

Figure 1: Framework of dynamic texture synthesis. (a) Learning; (b) Synthesis.
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2.1 Motion Characterization Techniques
A dynamic texture has one temporal dimension and two spatial dimensions and the effective
characterization of dynamic textures lies in the optimal utilization of time–space motion correlation.
Although a number of motion based dynamic texture characterization techniques exist (Polana and
Nelson, 1992; Bouthemy and Fablet, 1998; Fablet et al, 2002; Fablet and Bouthemy, 2003; Peh and
Cheong, 1999; Péteri and Chetverikov, 2005; Péteri and Chetverikov, 2004; Fazekas and
Chetverikov, 2007; Rahman and Murshed, 2007), the most accurate characterization on a set of low
quality dynamic textures is achieved by the Optimal Time Space Ratio (OTSR) technique (Rahman
and Murshed, 2007) where textures are identified by a set of first order motion features, namely
Motion Co-occurrence Matrix (MCM) that are computed along time and space dimensions and
merged at an optimal time–space ratio. MCM is a tabulation of how often different combinations of
motion vectors occur in a sequence of motion frames of a dynamic texture and thus encodes the
motion distribution capturing the dynamics effectively. Thus, we use MCM as motion distribution
statistics in our proposed synthesis framework.

2.2 Motion Estimation Algorithms
Image frames are regenerated in our proposed framework using the motion vectors in regenerated
motion frames as guidelines. Motion vectors thus computed have to have two-fold properties in
order to comply with our proposed synthesis framework – (i) In order for the motion distribution to
capture the accurate dynamics of the texture the motion vectors need to reflect true motion content,
and (ii) in order to regenerate image frames from motion frames, it is necessary that the source and
destination of motion vectors have identical intensity patterns, as will be elaborated in Section 3.4.

There are two conventions for estimating 2D motion in the field of signal processing (Shi and
Sun, 2000) – (i) Block motion estimation, and (ii) Pixel motion estimation. Block motion is mostly
used in block-based video coding systems (Shi and Sun, 2000) (MPEG-1/2/4 and H.26X) where a
video frame is partitioned into a set of non-overlapped, small rectangular blocks and a motion
vector is associated with each block by finding its best match in the previous frame with maximum
correlation. From a coding point of view the difference between a block and its best match is stored
as error. As can be observed from our proposed synthesis framework (Figure 1), during synthesis
only motion frames are regenerated not the difference errors. As a result, during the synthesis step
the error information associated with the block is missing and we are unable to restore the image
frames fully. Block motion is thus not a viable option to use for the purpose of synthesis although
block motion computes true motion for dynamic textures (Rahman and Murshed, 2007).

The large body of literature on pixel motion i.e. optical flow computation algorithms (Shi and
Sun, 2000; Larsen et al, 1998; Berezait et al, 2000; Corpetti et al, 2002; Memin and Perez, 1999)
can be roughly grouped into gradient based, correlation based, phase-based and spatiotemporal
energy based approaches. These techniques however were developed considering properties of
regular objects that are not usually observed in most dynamic textures. Optical flow estimation of
dynamic textures in a more generalized way was first addressed, however in Rahman and Murshed
(2007). In this technique, the choice of the flow vector for a pixel is guided by a probability density
function obtained using the spatiotemporal autoregressive (STAR) model expressed as

(1)

where It(x,y) is the intensity associated with pixel (x,y) at time t, (∆xi,∆yi), is the displacement vector
corresponding to the i-th possible destination pixel in search window of the next frame and Ai is the
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coefficient associated with the i-th destination pixel. Ai’s constitute the probability density function
and the pixel with the highest Ai is assumed to be the destination of pixel (x,y) at t-th image frame. 

STAR model, however, fails to produce accurate motion content because of the following flaws
– (i) The STAR model is appropriate for modelling energy and mass diffusion in thermodynamics
and fluid dynamics respectively. As intensity does not represent energy or mass level, applying this
model on intensity is inappropriate. (ii) In the STAR model a large neighbourhood structure is
required for accurate approximation of coefficients in (1). However spatiotemporal motion
uniformity may not exist for such a large neighbourhood. On the other hand choosing a small
neighbourhood may not be sufficient for estimating the coefficients. All these observations on
existing motion estimation algorithms leads us to develop a new motion estimation algorithm
suitable for synthesizing dynamic textures as will be elaborated in the following sections.

2.3 Synthesis Techniques
The large number of works on dynamic texture synthesis can be divided into two groups – 
(i) Physics based approaches and (ii) Image based approaches. Synthesis of dynamic textures is
performed in physics based approaches by building a physical model of the process that generates
the scene. For example, steam, fog, smoke, and fire have been simulated in this manner (Ebert and
Parent, 1990; Ebert et al, 1994; Stam and Fiume, 1993; Stam and Fiume, 1995). Explosions, fire, and
waterfalls have been successfully simulated by animated particle systems (Reeves, 1983; Reeves and
Blau, 1985; Sims, 1990). Simplified physically-based models have also been used to produce
synthetic waves and surf (Fournier and Reeves, 1986; Peachey, 1986).

An alternative to the physics based techniques are image based ones. In this framework, new texture
moves are generated using images without building a physical model of the process. Among these
approaches one can distinguish between two subclasses, the so-called nonparametric approaches that
forego the use of a model altogether and generate synthetic images by clever concatenation or repetition
of image data, and parametric image based approaches that rely on a model, albeit not a physical one.
The nonparametric methods generate dynamic textures by image quilting (Efros and Freeman, 2001)
or by directly sampling original pixels (Wei and Levoy, 2000), frames (Schodl et al, 2000), wavelet-
structures (Bar-Joseph et al, 2001), 2D patches (Kwatra et al, 2003), and 3D chunks (Edwards, 2002)
from a training sequence and usually produce high quality visual effects. Compared with nonparametric
approaches, the parametric methods provide better model generalization and understanding of the
essence of dynamic texture. Our proposed synthesis technique also falls into the category. The typical
parametric models include Szummer and Picards STAR model (Szummer and Picard, 1996), Campbell
et al’s eigenspace representation (Campbell et al, 2002), Fitzgibbon’s stochastic rigidity model
(Fitzgibbon, 2001), Soatto et al’s linear dynamic system (LDS) (Soatto et al, 2001; Doretto et al, 2004),
the Fourier descriptor based LDS by Bobby et al (Abraham et al, 2005), Yuan et al’s Closed-Loop LDS
(Yuan et al, 2004), Wang and Zhu’s moveton representation (Wang and Zhu, 2002; Zhu et al, 2005;
Wang and Zhu, 2004a; Wang and Zhu, 2003), generative graph representation (Wang and Zhu, 2004b),
and Che et al’s dynamic texture modelling with mixtures of locally linear subspaces (Li et al, 2005).
They are very helpful for tasks such as dynamic texture editing, recognition, segmentation and image
registration. However, most parametric models are less likely to generate dynamic textures with the
same quality as the non-parametric models, in particular for videos of natural scenes.

3. PROPOSED SYNTHESIS TECHNIQUE
Each of the key steps of our proposed synthesis technique is elaborated in detail in the following
sections.



Dynamic Texture Synthesis Using Motion Distribution Statistics

Journal of Research and Practice in Information Technology, Vol. 40, No. 2, May 2008 133

3.1 Motion Estimation
As discussed in Section 2.2, not all pixel motion estimation algorithms are suitable for dynamic
texture synthesis and we thus develop a new pixel motion estimation algorithm for dynamic
textures. Dynamic textures are motion patterns with spatiotemporal motion uniformity and the
majority of pixels of a small spatial group are supposed to undergo uniform displacement in a
uniform direction. Like conventional flow estimation approaches, if we assume that the brightness
of a point is constant over a short period of time, the flow estimation problem for a pixel can be
stated as identification of flow vector that maximizes motion uniformity for a small spatial
neighbouring group of pixels under this brightness constancy constraint. 

Before elaborating the proposed motion estimation algorithm, we first formulate motion
uniformity for a group of pixels centred at ps. Let η(ps) represent the set of correlated
neighbourhood pixels centred at ps and δ(pi) represent the set of possible destination pixels in the
next frame under the brightness constancy constraint, i.e., pixels in the next frame whose intensity
are similar to pi within a search window. Uniformity for ps under certain neighbourhoods and
possible destination relationships can be formulated as –

(2)

where ϑ is the uniformity vector and mode is the statistical mode function. Based on the
abovementioned definition of uniformity our proposed algorithm is elaborated in Figure 2.

From an implementation point of view, the following adjustments are made to the proposed
algorithm:
• Due to the quantization error in digital images, brightness constancy may not be observed in

some cases. A small error window of + ∆ is thus used when searching for similar pixels. 
• The motion histogram is implemented as a two dimensional histogram indexed by magnitude

and direction. However, due to the quantization error, motion uniformity may not be restricted
along a salient magnitude and direction. In order to deal with this problem, bands of motion
magnitude and direction are considered while estimating flow vectors and thus the uniformity

FUNCTION Motion_Estimation
ARGUMENT current_frame, next_frame
RETURN motion_vectors
FOR all pixel ps in the current_frame

FOR all correlated pixel pi∈η(ps) 
Populate a motion histogram h using all
possible displacement vectors of pi

corresponding to similar intensity pixels in 
next_frame;

ENDFOR
motion_vectors(ps) = The displacement vector of
ps that corresponds to maximum(h);

ENDFOR

Figure 2: Proposed motion estimation algorithm.
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function returns one of the vectors in the maximum histogram, selected either randomly or by a
spatial uniformity constraint.

• The set of destination pixels obtained under the brightness constancy assumption is reduced to
those for which the source pixel has to travel the minimum distance before populating the
motion histogram. This is to prohibit the assignment of erroneous flow vectors to static
backgrounds.
Our proposed algorithm does not discriminate between types of textures by utilizing motion

uniformity – universal to all types of textures – while computing optical flow thus proving a robust
platform. It combines motion direction and magnitude using a histogram instead of considering
them separately as is done in the STAR model (Rahman and Murshed, 2007). Our proposed
algorithm is not constrained by size of the correlation structure. As noisy motion vectors are not
uniform in nature, they are automatically eliminated by our algorithm. Our proposed algorithm has
some added tuneable parameters like error window and band size to make it more adaptive
compared to the STAR model.

Our proposed motion estimation algorithm ensures that the source and destination pixels of the
computed motion vectors have identical intensities thus conforming to the requirement of the image
frame regeneration step of our proposed synthesis framework. Our proposed algorithm computes
true motion for dynamic textures and we empirically establish the accuracy of the optical flow
estimates obtained by our proposed method by classifying a diverse set of dynamic textures with
high accuracy.

3.2 Motion Distribution Statistics
Motion distribution statistics encodes the movement pattern within a texture and we use MCM as
the distribution statistics. The temporal MCM used in OTSR encodes motion correlation between
successive motion frames and thus we can use temporal MCM to predict a future motion frame from
the previous one. Spatial MCM however encodes motion correlation between spatial neighbours
within a motion frame and thus lacks any ability to predict future motion frames. For accurate
prediction of future motion frames we need to incorporate spatial information. We thus redefine
MCM merging both spatial and temporal information into a unified spatiotemporal MCM
considering one temporal neighbour and two spatial neighbours along three dominant axis
directions while computing MCM as will be discussed next. We are motivated to consider three
spatiotemporal neighbours by the optimality of natural 1:2 ratio of time-space motion correlation as
established in OTSR.

Let a sequence of motion frames be represented by a function Mt(x,y) such that (x,y) points to
the spatial location at t-th motion frame. MCM Γ is a tabulation of how often different quadruples
of motion vectors occur over the frame sequence such that is associated with a pixel
Mt(x,y) and its neighbour Mt–1(x,y), Mt–1(x–1,y) and Mt–1(x,y–1) are associated with , and 
respectively. During the motion regeneration of a point, we use the motion vectors of its spatio-
temporal neighbourhood (Figure 3) in the previous motion frame to predict the motion vector of the
point in the current motion frame using MCM.

3.3 Generation of Motion Frames
Given a seed motion frame M0 and motion co-occurrence matrix Γ, we would like to generate a
sequence of motion frames M1, M2,…,Mτ where τ is the length of the synthesized texture. We
considered a few alternate ways to compute future motion frames. Given Mt–1(x,y), Mt–1(x–1,y) and
Mt–1(x,y–1), Mt (x,y) can be chosen – 
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• randomly i.e. Mt(x,y) can be assigned any motion vector independent of its spatiotemporal
neighbours. However such a selection will make the texture look too random.

• by using Maximum Likelihood (ML) criterion i.e.

(3)

However, this makes the selection process too much deterministic. The principal of synthesis
deserves some degree of randomness that is lost while considering such a selection process.
• by choosing between too random and too deterministic i.e. a selection process that does not

eliminate the possibility of selecting the most likely motion vector and on the other hand does
not eliminate the possibility of selecting a random vector as well. We follow this criteria for
selecting a motion vector for Mt(x,y). Given the co-occurrence matrix Γ we compute a
corresponding Probability Distribution Function (PDF) Γpdf and Cumulative Distribution
Function (CDF) Γcdf as

(4)

where the symbol ≤ is used to denote the order of the motion vectors for indexing the co-occurrence
matrix. We are now interested in predicting Mt(x,y), given the neighbouring motion vectors Mt–1(x,y),
Mt–1(x–1,y) and Mt–1(x,y–1). Mt(x,y) is computed according to the following steps – (i) A random
number 0 < ℜ ≤ 1 is generated using a uniform distribution. (ii) Mt(x,y) is set to j such that

(5)

Figure 3: Spatiotemporal neighbourhood of point Mt(0,0). The spatiotemporal neighbouring points considered for
computing MCM are Mt–1(0,0), Mt–1(0,–1) and Mt–1(–1,0).
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A graphical demonstration of this motion selection process for Mt(x,y) is presented in Figure 4.
This selection process does not eliminate the possibility of selecting most likely motion vectors as
it is guided by Γcdf and on the other hand it does not eliminate the possibility of selecting a random
vector. This point by point motion generation process is repeated to generate the motion frames in
the order M1, M2,…, Mτ .

3.4 Generation of Image Frames
Given a seed image frame ƒ0 and the sequence of motion frames M1, M2,…, Mτ , we would like to
generate a sequence of image frames ƒ1, ƒ2,…, ƒτ , where τ is the length of the synthesized texture.
Generation of ƒt from ƒt–1 using Mt can be carried out pixel by pixel. The motion vector Mt(x,y)
associated with a pixel (x,y) in frame ƒt , point to the source pixel in the frame ƒt–1 from where it
moved. Thus the easiest way to regenerate the image frame is to assign the intensities of the source
pixels in ƒt–1 to the destination pixel in ƒt as guided by motion vectors of Mt . However, due to
randomness in the motion regeneration step some erroneous motion vectors are generated. Thus a
straightforward copy of intensity from the source pixel will create a noisy visual texture and also
propagate this resulting error in future image frames.

In order to eliminate noisy motion vectors we perform group wise motion filtering. Our
motivation to group wise filtering comes from the motion uniformity principle of dynamic textures
which states that the majority of the pixels of a small spatial group are supposed to undergo uniform
displacement in a uniform direction. To carry out group wise filtering, the image frame is divided
into a set β of non overlapping, equal size small blocks. Motion uniformity is assumed to hold for
each of these blocks. For each block σ ∈ β, group wise motion filtering is carried out using median
filtering as –

(6)

After completing motion filtering, regeneration of the image frame ƒt is carried out by copying
the intensities of the source pixels in ƒt–1 as guided by motion vectors of Mt .

Figure 4: A graphical demonstration of motion selection process for Mt(x,y). The graph shows the cumulative
probability distribution of possible motion vectors given neighbouring motion vectors Mt–1(x,y), Mt–1(x–1,y),

Mt–1(x,y–1). For random number ℜ = 0.7, Mt(x,y) is set to v➞3
’ .
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Although block by block filtering eliminates noisy motion vectors, it leaves some block artefacts
i.e. intensity discontinuity among neighbouring blocks in the synthesized texture. As motion
filtering is performed on very small sized blocks (e.g. 2x2), we are able to use simple block artefact
removal filtering techniques although a large number of filtering approaches to eliminate block
artefacts exist (Meier et al, 1999) in the literature. We use mean filtering to remove block artefacts.
Given ƒt , the filtering is carried out as

(7)

where It is the filtered image and θ(p) represents the spatial neighbourhood surrounding pixel p.
Such a filtering makes the synthesized texture look bit blurred. However such blurriness is
acceptable with non-rigid dynamic textures.

4. EXPERIMENTAL RESULTS AND DISCUSSION
In this section we present the outcomes of our proposed synthesis technique. The dynamic textures
used in the experiments are a set of low quality Szummer dynamic textures (Szummer and Picard,
1996). Motion estimation plays the key role in the overall synthesis process. The meaning of motion
distribution statistics and regeneration of image frames strictly depends on the genuineness of motion
estimation and we present a set of experiments to establish the authenticity of estimated motion
vectors in Section 4.1. The image sequences of the synthesized textures and some experimental
results on how representative the synthesized textures are of their seeds are presented in Section 4.2.

4.1 Motion Estimation Results
Motion estimation is the key step of our proposed synthesis framework and the correctness of the
estimated motion needs to be established before applying the synthesis. For this experiment we
choose a set of dynamic texture sequences including smoke, fire, escalator, and spiral water where
the image sequences themselves provide strong visual cues about flow directions so that we can
visually evaluate the correctness of the estimated motion. The choice of textures is motivated by the
diversity of their types including fluid, gaseous, rigid and fire type non-rigid sequences. Although
we conducted experiments with different correlation and search windows, results are cited for a
correlation window of size 9 × 9, search window size of 8 × 8 and histogram size of 2 × 4 as best
results were obtained with these parameter values.

Figure 5 shows the motion vectors computed using our proposed algorithm. The image
sequences themselves provide strong visual cues about flow directions. Thus we can visually
evaluate the correctness of the results. In general, despite the diversity of texture types, the motion
field estimates computed by our algorithm are consistent with human observations. The smoke
sequence indicates that there is a wind from left to right as clearly portrayed by the motion field
computed from smoke sequence. Another important observation is the presence of some
background motion in the motion field of the smoke sequence. This is due to presence of fluid
superimposed over the background. The escalator sequence indicates an upward movement and the
motion field also agrees with this visual observation. Due to the movement of reflected edges, bands
of flow vectors computed by our algorithm can be observed on both sides of the escalator. The
quality of motion vectors computed from fire sequence can be evaluated visually observing their
direction on the edges. Our algorithm did not perform as well for the spiral water sequence because
the motion field is unable to portray visually the counter clockwise flow directions. This is partially
due to the low quality of the images.



Dynamic Texture Synthesis Using Motion Distribution Statistics

Journal of Research and Practice in Information Technology, Vol. 40, No. 2, May 2008138

We have also conducted a classification experiment to verify how well our proposed motion
field estimates can identify dynamic textures and also to establish the superiority of our proposed
technique over the STAR model. We used a set of ten different types of dynamic textures (Figure
6) for the classification experiment. For each texture type the image sequence of 100 frames was
partitioned into a total of ten video clips each containing ten motion frames and MCMs were
computed from each of these video clips. Classification was performed on the entire database of 100
video clips using the k-NN classifier. A destination class for a video is decided based on majority
wins rule. In case of a tie, the video is classified into an undecided group. We computed distance
between the image sequences in terms of their MCM using Kullback–Leibler (KL) divergence

Figure 5: Motion estimates for different dynamic textures computed between two consecutive frames using
proposed motion estimation algorithm.

Figure 6: Representative video clips for the ten different dynamic textures used in the experiments.
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(Rahman and Murshed, 2007) that measures the amount of information lost when two motion
probability distributions replace each other.

The classification results are presented in Figure 7 using motion fields obtained by the proposed
method and the STAR model. For the sake of fairness the same set of parameters (correlation
window, destination window etc.) were used for both of the algorithms. Results were obtained only

Figure 7: Classification accuracy using motion vectors computed by (i) our proposed algorithm and 
(ii) STAR model for different -NN classifier.

(a) Seed smoke sequence

(b) Synthesized image frames computed from filtered motion frames

(c) Synthesized image frames after block artifact removal.

Figure 8: Synthesis steps of the smoke sequence
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for odd values of k where the majority is unarguably decidable. Although it is natural for any
majority win k-NN classifier to degrade accuracy rate slowly with k, the degradation rate in Figure
7 is significantly high due to the limited number of representative video clips per class.
Classification accuracy level obtained using optical flows of the proposed technique is relatively
5.42% better (across all k = 1, 3, and 5) than that of the STAR model. This better classification result
is due to the fact that motion vectors obtained using our algorithm are more representative of true
motion than that obtained using the STAR model. Thus we conclude that our proposed motion
estimation algorithm estimates true motion for dynamic textures.

4.2 Synthesis Results
We have synthesized a diverse set of dynamic textures including fire, smoke, boiling water, plastic
and river sequence using our proposed synthesis technique. Each of the grey scale seed sequences
of these textures have an image resolution 170 × 116 and we considered 20 image frames from each
of them for computing motion frames and their spatiotemporal MCM. Motion estimation was
conducted using the parameters mentioned in Section 4.1. For computing spatiotemporal MCM we
considered a 4-dimentional array with the last three dimensions indexed by motion vectors of neigh-
bouring pixels of the pixel whose motion vector indexes the first dimension. While regenerating the

(a) Seed fire sequence

(b) Synthesized image frames computed from filtered motion frames

(c) Synthesized image frames after block artifact removal.

Figure 9: Synthesis steps of the fire sequence
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motion frames we considered uniform distribution for generating a random number ℜ. For motion
filtering we used a window size of 2 × 2. We have synthesized 30 image frames of spatial resolution
170 × 116 for each texture. All the experiments were conducted on MATLAB 6.5.1. 

Figures 8 to 12 show the behaviour of our proposed technique while synthesizing the above-
mentioned dynamic texture sequences. In each case, on the first row we show a few images from
the original dataset, on the second row we show the synthesized image sequences computed from
filtered motion frames and on the third row we show the image sequences after removing block
artefacts. For each case block artefacts are clearly visible in all image frames after synthesizing
them from filtered motion frames. In order to eliminate these artefacts we apply mean filtering.
Mean filtering eliminates block artefacts as is visible from the final row in each figure. Such
filtering makes the image sequences look a bit blurred although it is unnoticeable for dynamic
textures. Our proposed method produces visually promising textures for non-rigid sequences like
smoke, fire, and boiling water. For sequences like plastics and rivers that are not strictly non-rigid
our method did not perform as well.

Evaluation of quality of a synthesized dynamic texture needs to address using two aspects – 
(i) Visual quality and (ii) Dynamic quality. In order to evaluate the visual quality of the synthesized
texture we computed grey-level histograms of both seed and synthesized dynamic textures as

(a) Seed river sequence

(b) Synthesized image frames computed from filtered motion frames

(c) Synthesized image frames after block artifact removal.

Figure 10: Synthesis steps of the river sequence
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presented in Figures 13 to 17. It can be observed that histograms of the synthesized dynamic
textures closely matches that of their seed textures which clearly establishes the fact that, visually
the textures are well reproduced.

In order to evaluate the quality of dynamics in the synthesized dynamic textures, we need to
assess how well the computed motion frames follow motion distribution of the seed sequence. We
thus conducted some empirical analysis on how representative the motion distribution of the
synthesized textures is of their seeds. We computed dissimilarity between each synthesized texture
and actual texture in terms of their MCM using KL divergence and results are presented in Figure
18. It can be observed that the dissimilarity between synthesized texture and its seed is very small
compared to that between the synthesized texture and other textures. It establishes the fact that
synthesized textures reproduce the dynamics of the original texture. 

5. CONCLUSION
In this paper we explored the potential of synthesizing dynamic textures using underlying motion
distribution statistics. More precisely we used Motion Co-occurrence Matrix (MCM) to encode the
dynamics of a texture and reproduced texture having identical motion distribution. We developed a
motion estimation algorithm suitable for synthesis applications and established the correctness of
motion estimates empirically. Our proposed synthesis technique produces visually promising
textures for short length strictly non-rigid sequences. Experimental results establish the fact that the
synthesized textures both visually and dynamically reproduce the original sequences. 

(a) Seed boil sequence

(b) Synthesized image frames computed from filtered motion frames

(c) Synthesized image frames after block artifact removal.

Figure 11: Synthesis steps of the boil sequence
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(a) Seed boil sequence

(b) Synthesized image frames computed from filtered motion frames

(c) Synthesized image frames after block artifact removal.

Figure 12: Synthesis steps of the plastic sequence

Figure 13: Gray-level histogram of (a) original smoke sequence and (b) synthesized smoke sequence.

(a) (b) 
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Figure 14: Gray-level histogram of (a) original fire sequence and (b) synthesized fire sequence.

(a) (b) 

Figure 15: Gray-level histogram of (a) original river sequence and (b) synthesized river sequence.
(a) (b) 

Figure 16: Gray-level histogram of (a) original boil sequence and (b) synthesized boil sequence.

(a) (b) 

Figure 17: Gray-level histogram of (a) original plastic sequence and (b) synthesized plastic sequence.

(a) (b) 
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(a) Normalized distance between
synthesized smoke and actual textures

(c) Normalized distance between
synthesized fire and actual textures

(b) Normalized distance between
synthesized boil and actual textures

(d) Normalized distance between
synthesized river and actual textures

(e) Normalized distance between synthesized
plastic and actual textures

Figure 18: Distance between synthesized textures and actual textures in terms of motion co-occurrence statistics.

Our proposed technique, however, has some inherent limitations. It is not suitable to produce
long sequences as the spatial constraints to keep the appearance as well as dynamics is limited. Our
proposed technique also works under the constraint that the synthetic image sequences have the
same resolution of the seed image sequence. Finally our proposed technique models only the
dynamics and a mapping is done from dynamics to appearance which could be handled well if the
model incorporates appearance as well. Altogether there is still room for improvement and we look
forward to working on these issues in future.
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