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Visual Conspicuity Index: Spatial Dissimilarity,
Distance, and Central Bias
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Abstract—We propose an image conspicuity index that com-
bines three factors: spatial dissimilarity, spatial distance and
central bias. The dissimilarity between image patches is evaluated
in a reduced dimensional principal component space and is in-
versely weighted by the spatial separations between patches. An
additional weighting mechanism is deployed that reflects the bias
of human fixations towards the image center. The method is tested
on three public image datasets and a video clip to evaluate its per-
formance. The experimental results indicate highly competitive
performance despite the simple definition of the proposed index.
The conspicuity maps generated are more consistent with human
fixations than prior state-of-the-art models when tested on color
image datasets. This is demonstrated using both receiver operator
characteristics (ROC) analysis and the Kullback–Leibler distance
metric. The method should prove useful for such diverse image
processing tasks as quality assessment, segmentation, search, or
compression. The high performance and relative simplicity of the
conspicuity index relative to other much more complex models
suggests that it may find wide usage.

Index Terms—central bias, conspicuity, dissimilarity, spatial dis-
tance, visual saliency.

I. INTRODUCTION

T HE selective attention mechanism makes it possible
to rapidly understand visual scenes by dynamically

changing the point of fixation. Via the ballistic saccades of the
eyes, the limited resources of the visual apparatus are directed
to points of attentional awareness. In principle, computational
models of attention and of visual fixations have great potential
to enhance algorithms that accomplish visual tasks such as
image retargeting, object detection, object recognition and
nonphotorealistic rendering. Central to the development of
such goals are models of visual attention, which have gained
heightened interest in recent years.
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Daly [1] presented a visible differences predictor that relates
contrast sensitivity to the attention mechanism. Several later
models have been proposed of visual attentional strategies
[2]–[4]. While visual tasks dominate where the gaze is cast
[5], various lower-level visual features also appear to play
a role. Models for “fixation prediction” have utilized quite
a large variety of features and indeed, overall philosophies.
The majority of such methods could be categorized among
three general types: i) perceptual feature matching, whereby
the model involves finding occurrences of features that match
cortical neuronal response models, the idea being similar to
the matched filter principle [3]; typically the idea is to identify
center-surround patches in the image [6]; ii) statistical fixation
analysis, whereby the statistics of images at the point of gaze
are measured from real eyetracking data, or human annotations,
and used to model likely fixation locations [7], [8]; and iii)
local information maximization, where the idea is to collect as
much unique information as possible at each fixation [4], [9].
In some regard all these three general approaches are directed

towards accomplishing different goals, but are then measured
against similar criteria (coincidence with human fixation selec-
tion). In all of these the method seeks to measure some aspect(s)
of visual “saliency” that tends to draw fixations.
The notion of saliency as conspicuity takes the idea that

salient image locations that markedly visually differ from their
surroundings by some measureable property, hence will tend
to visually “stand out,” thereby drawing attention [10]. The
models i)–iii) above do not necessarily imply that the salient
locations sought after are necessarily highly conspicuous, as
information gathering and feature matching are different things.
We utilize the term “conspicuity” to imply that a location in an

image exhibits different properties from its surroundings, where
different is taken to mean measurably dissimilar. The concept is
similar to that of “surprise” [11] models in videos, where occur-
rences of statistically unusual events are made using a measure
of sudden change of information over time using a statistical
model. We develop a model called VIsual Conspicuity Index
(VICI) that extends our initial concept in [12] in a number of
ways, e.g., by Gaussian fitting the spatial distance in (2), rather
than using the -norm, using a generalized Gaussian to model
central bias, consistent with an average human fixation map
[13], and by application to video-based saliency detection.
VICI seeks locations in an image that are measurably dis-

similar from their surroundings, along with some other relevant
factors. It does not utilize image features that ostensibly match
cortical response profiles, nor does it rely on statistics measured
at visual fixations, nor does it seek to capture as much new in-
formation as possible at each selected location.
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Fig. 1. Framework of VIsual Conspicuity Index (VICI).

Fig. 2. Generalized Gaussian fit to average human fixation map [13].

Instead, VICI seeks image locations that are different from
their surround. This philosophy is also similar to the idea of
center-surround filtering of luminance or color, but is not nec-
essarily identified with discontinuities or edges, which need not
be “visually attractive” [14].
Secondly, we assign greater importance to plausible next fix-

ation locations by assigning a spatial distance weight.
Thirdly, we account for the tendency of the gaze to return to

center [15].
Thus, VICI integrates three elements: spatial dissimilarity,

spatial distance and central bias. Spatial dissimilarities are
evaluated in a reduced dimensional space. Measured increases
in spatial distance between patches cause the influence of dis-
similarity between them to decrease; dissimilarity is inversely
weighted by distance. The inclusion of a model for the tendency
to return the gaze to central is accomplished by a weighting
mechanism that biases VICI towards conspicuous nearer the
center of the image.

II. PROPOSED VISUAL CONSPICUITY INDEX

The framework of VICI is shown in Fig. 1 and involves four
main stages. First nonoverlapping patches are drawn from an
image, and are mapped into a reduced dimensional space. A
spatially weighted dissimilarity measure is computed for each
patch relative to the other patches. A weighting mechanism that
imposes a bias towards the image center is used in the next step.
Finally, the saliency map is normalized, resized to the scale of
the original image, and smoothed with a unit-energy Gaussian
function .

A. Splitting an Image Into Patches

The input image is split into nonoverlapping
patches. The size of each patch is , so the total number
of patches is . A patch is denoted as where

and . All of the color
channels are stacked to represent each image patch as a column
vector of pixel values.

B. Reducing Dimensionality

PCA is used to represent the patches in a reduced dimensional
space. Unlike [16], the PCs are sampled from patches in the cur-
rent image, not from a large number of images. The patch PCA
coefficients, which are maximally decorrelated, thereby tend to
emphasize spatial dissimilarity within the image. As shown in
Fig. 1, a patch is mapped to a point in the reduced dimensional
space. By using PCA, the length of the vector corresponding to
patch is reduced to . More specifically, the patch is
represented as a vector .

C. Spatially Weighted Dissimilarity (SWD)

As the spatial distance between two patches increases, the de-
gree of influence of dissimilarity between them is taken to be de-
creased. In this way, the dissimilarity of a patch from its neigh-
bors is increased if more similar patches to it are placed more
distantly. Thus dissimilarities are inversely weighted by their
spatial distance. The Spatially Weighted Dissimilarity (SWD)
of the patch is

(1)

where the spatial distance weighting between
and is

(2)

and where is the Euclidean distance between the
patches and . We fixed the parameter
using the learning procedure and dataset in [8]. The “salient”
regions of images in this dataset were manually labeled by a
large number of subjects [8]. We fixed the parameter
simply to be able to cover as many pixels as possible of all the
labeled regions in all images in the database. The dissimilarity

between patches and in the reduced dimen-
sional space is defined

(3)

D. Weighting the SWD Based on Central Bias

The SWD of each patch is also decreased by a factor that
weights it as a function of the distance between each patch and
the image center, thus accounting for an increase in conspicuity
owing to central bias [15]. Therefore, the conspicuity of image
patch is defined

(4)

where

(5)
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Fig. 3. Images for qualitative comparison between VICI and the four other approaches on the color image dataset 1. The columns from the left to the right are:
the input images, the saliency maps from [3], [4], [18] and [17], from VICI, and lastly the human fixation maps.

TABLE I
PERFORMANCE ON THE COLOR IMAGE DATASETS

where is the Euclidean distance between the center of
the patch and the image center, and where and

, where and where
is the maximum possible distance from a pixel to the center of
the image. The factors and as used in VICI were determined
as follows. In [13], the authors calculate an average human fix-
ation map from all images of their database (shown in Fig. 4 of
their paper). They find that this map indicates the central bias.
To model the central bias, they fit a Gaussian function to the
“average human fixation map”; likewise, we fit a generalized
Gaussian (5) to the “average human fixation map” from [13] by
selecting the parameters and (Fig. 2).

III. EXPERIMENTAL VALIDATION

We applied our method on three public image datasets and
one video clip to evaluate its performance. VICI was compared
with different state-of-the-art saliency detection and fixation se-
lection models based on a commonly-used validation approach.
We fixed 14 as the size of each patch and 11 as the number of
reduced dimensions. This patch size is consistent with those of
the “salient” regions derived from human fixations on Bruce’s
dataset [4]. We used the same parameter settings on all datasets.
We assumed a commonYCbCr color space for color images and
the video.

A. Results on Color Image Datasets

We tested VICI on two color image datasets. The first dataset
is introduced in [4]. It contains 120 images including indoor
and outdoor scenes, along with 20 subjects’ fixations that were
recorded for each image. The second dataset [13] contains 1003
natural images of different scenes with recorded fixations.
To compare the conspicuity maps obtained by the VICI index

with human fixations, we use the validation approach from [4].
Specifically, the area under the ROC, i.e., AUC, was used to
quantitatively evaluate model performance. We generate ROC
curves using code from [17].

Fig. 4. Quantitative comparison between correlations of VICI index and two
other approaches [3], [7] against human fixations on the gray image dataset.

Fig. 5. Qualitative comparison of VICI and two other approaches [3], [7] on
the DOVES dataset [19]. Each model generated ten fixations.

As demonstrated in Table I, VICI significantly outperforms
the four other methods relative to measured human fixations.
To illustrate the efficiency of VICI, Fig. 3 compares it with
four highly competitive state-of-the-art approaches [3], [4],
[17], [18]. Clearly, VICI yields a highly competitive degree of
consistency with human fixation maps.

B. Results on Gray Scale Image Dataset

The gray scale image dataset used is DOVES which is
described in [19]. The DOVES dataset includes visual eye
movement data from 29 human observers viewing 101 nat-
uralistic calibrated images. We remove the first fixation of
each eye movement trace since this fixation is forced [19]. To
evaluate performance, the comparison method introduced in [7]
is used: the spatial correlations between algorithmic and human
fixations is calculated. In order to match the fixations in this
dataset, we generate ten fixations from each VICI conspicuity
map by selecting the most ten conspicuous regions. We also
calculate the correlation for the approach in [3] and for GAFFE
[7], with the quantitative results shown in Fig. 4. The first
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Fig. 6. Performance comparison between VICI and three other methods [3], [11], [18] on a video clip from [11]. The computed conspicuity or saliency distributions
are shown at human saccade locations (narrow dark blue bars) and random locations (wide light green bars). The KL divergence between these distributions
indicates the performance of each model.

ten fixations generated by these algorithms are also used. As
shown in Fig. 4, the points selected by the VICI index are more
correlated with the human fixations than are the salient points of
[3] or the statistically predicted fixations of [7]. The qualitative
results are shown in Fig. 5. The fixations “predicted” by VICI
are more compact.

C. Results on Video Dataset

To compare with the results reported in Fig. 4 of Hou et al.
[18], we use the same video clip “beverly03” as Hou did. This
video clip is from the dataset introduced in [11]. We use the
evaluation method proposed in [11] to compare the performance
of the VICI index with the other models. Fig. 6 compares VICI
with three classical and competitive methods [3], [11], [18]. The
conspicuity or saliency distribution at human saccade locations
are represented by narrow blue bars. The random locations are
represented by wide green bars. The horizontal axes represents
rescaled “saliency” values (dark blue bars) and random loca-
tions (light green bars), while the vertical axes represents the
rescaled number of pixels corresponding to the saliency value.
The KL divergence of these two distributions indicates the per-
formance of each model. The ranking of KL distances indicates
that our method achieves better performance than the other three
methods.

IV. DISCUSSIONS AND CONCLUSIONS

We proposed a visual conspicuity index method by in-
tegrating three elements: dissimilarity, spatial distance and
central bias. Such a conspicuity index can be used to guide
image compression [20] or image quality assessment [21].
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