
A Scene Representation Application implementing

LASeR Using Object-Based Timing Model

Xiaocong Zhou1, Jianping Chen
2
, Tiejun Huang3,

1Institute of Digital Media, Peking University, Beijing 100871, China,

 2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3Key Laboratory of Machine Perception (Ministry of Education), Peking University, 100871,

China

{xczhou, jpchen, tjhuang}@jdl.ac.cn

Abstract. In this paper, we present a multimedia scene representation

application implementing MPEG4-Part 20 Lightweight Application Scene

Representation standard (LASeR). In an interactive multimedia scene, we are

usually concerned about two questions: (i) The spatial-temporal management of

scene elements; (ii) How to manage the interaction between the user and the

multimedia scene. In this paper we propose an object-based timing model to

ensure all the elements are rendered in correct time, and we also propose

corresponding strategies to deal with the user’s actions. At the end of this paper,

we show some instances of the rich-media system. The future of rich-media is

also considered.

Keywords: LASeR, rich-media, scene description, interactive, object-based

timing model.

1 Introduction

With the increasing demand of digital media and the broadband availability, the

circulation of digital media is growing rapidly. When people consume digital contents,

they do not be content with only audiovisual materials but also a feature-rich

environment.

The term rich media can be used in contrast to media that only uses traditional

forms of audiovisual material. Rich media, on the other hand, includes a combination

of some or all of the following, audio, video, image, text and animation. Rich media

can be considered synonymous with interactive media which allows users to control

the playback of its elements, the sequence of content, and choose what to see or

experience.

The multimedia scene is an example of rich media. So a scene description scheme

is required to present a scene with plural number of media. The scene description

scheme also enables system to place each specific medium on a scene with a suitable

spatial and temporal organization and allow interactions between multimedia objects

of this scene, so the users are able to consume digital contents consistently in a

feature-rich environment. LASeR (Lightweight Application Scene Representation) is

a MPEG International Standard which defines the scene description format. The

LASeR specification has been designed to allow the efficient representation of 2D

scenes describing rich-media services for resource-constrained devices [1]. A rich-

media scene is a dynamic and interactive presentation comprising 2D vector graphics,

images, text and audiovisual materials. The description of such a scene describes the

spatial and temporal organization of its elements as well as its possible animations

and interactions.

 In this paper, we present a multimedia scene application using LASeR as its scene

description format. We present the multimedia scene system model and analyze how

to parse a multimedia scene description created according to the LASeR standard.

Some strategies and methods are also proposed to ensure that the scene is represented

correctly. We propose an object-based timing model which keeps the temporal

module of the scene representation application running well.

 The rest of this paper is organized as follows. After the introduction, section 2

describes system model in detail, including the strategies and methods used in this

system. Section 3 shows the experimental results, and the conclusion of the work is

given in section 4. Finally, section 5 is the acknowledgment [5].

2 System Analysis

In this section, we describe the framework, and analyze how to parse a multimedia

scene, and then propose an object-based timing model. At the end of this section we

present the interaction management.

2.1 System Model

In a scene representation system, a scene stream server is needed. A scene stream

consists of scene units which describe the multimedia scenes, and it does not contain

the real audio or video streams. Persistent LASeR scene stream should be created by

this server so that end users can consume digital contents in a feature-rich

environment. Some other media content servers are also needed in this system. Users

will get real digital contents from these servers, such as images, video and audio

streams. Imagine that you are watching a soccer match in a rich-media environment:

you can get each player’s images from a media content server which provides these

images and you can also get match commentary from another media content server,

and the match video stream is received from a live media content server. All these

contents are downloaded and processed, and then represented in a scene consistently.

See Figure 1, the PCs and mobiles first receive LASeR scene stream from a scene

stream server, then users could interact on the elements in the scene and choose the

media contents they want. The media contents that users consume come from those

media content servers.

Figure 1: The system model

When the terminal receives a scene stream, it needs to process the stream and then

represent the multimedia scene. This functionality is implemented by the scene

representation application which works in a terminal such as a PC or a mobile phone.

The scene representation application involves three main functions, scene parsing,

object management and interaction management. First the scene parsing module

parses the scene stream, and then gets all the elements information. The object

management module will deal with the element information and render visual

elements in correct time. When interaction happens the interaction management

module needs to process user action and respond to the action. Figure 2 shows the

scene representation application modules.

Figure 2: scene representation application modules

2.2 Scene Parsing Module

The terminal device receives the LASeR scene stream from a scene stream server.

One LASeR scene stream consists of scene access units, so a LASeR scene may have

a set of access units. Terminal should parse these scene units and store their elements,

and then represent the scene in proper time.

Every scene access unit has a time attribute to tell the terminal when to represent

this scene unit so the terminal could parse these scene units in time order. When a

scene unit needs to be represented, the terminal first constructs its scene tree whose

nodes are the elements in this scene unit [1]. After that, the terminal cloud get all the

nodes information of this scene tree, such as some graphs, remote images, video

streams and so on. All the elements are kept in the object management module. In this

module, elements in the scene unit are kept as scene objects. It is easy to understand

that images and graphs are treated as scene objects, but some other LASeR elements

such as LASeR “conditional”, “animate” and event listener are also treated as scene

objects [1]. For example, LASeR “conditional” is an important element which may

contain several scene commands for later execution. For instance, insert an image or

an animation into the scene. A “conditional” element may be activated by time or user

event. After activated, the “conditional” element notifies a begin event and then the

commands in this “conditional” element will be executed. The begin attribute of

“conditional” element could specify the time when the “conditional” element will be

activated. The default begin value is infinite. A fragment of a LASeR scene unit is

shown below [3].

<sceneUnit ref="stream0" begin=”1s”>

<lsr:NewScene>

<svg id=”sroot”>

<animate xlink:href="#im1" attributeName="x" from="-170"

to="87" begin=”1s” dur="3s"/>

......

 <lsr:conditional id=”animRes” begin=”5s”>

 <lsr:Insert ref="sroot">

<image x="180" y="50" xlink:href="stream:bg2" />

</lsr:Insert>

 </lsr:conditional>

 </svg>

</lsr:NewScene>

</sceneUnit>

In addition to the element itself, the spatial information of each element will also be

stored. This information may be stored in the attribute transform of an element or

inherited from its parent element. The spatial information contains the translation,

scale and rotation of the element.

2.3 Object-Based Timing Model

An object-based timing model is proposed in this section. When we have already

parsed a scene unit, how can we manage the objects so that they will be rendered in

correct time? Time is one of the most important information in a scene representation

application. Firstly, we introduce three concepts: Media Time, Scene Time [1] and

Rendering Time. Media Time is a common system time, but Scene Time is a relative

time, and the two concepts come from LASeR standard. The Scene Time is set to zero

when a new scene needs to be presented. For example, the scene time of the time

point x in a new scene is calculated in Figure 3 [1].

Figure 3: Media Time and Scene Time

Rendering Time is the time when an object is rendered in a scene, and it is relative

time, too. Some elements of a scene unit may have time attribute which is Rendering

Time. In the following scene unit, the value of attribute “time” equals to 14s, which

indicates that the scene unit will be represented after the system has been running for

14 seconds; The element “lsr:conditionl” also has an attribute “begin” whose value is

5s which is the object’s Rendering Time. It means that after this scene has been

rendered for 5 seconds, the “lsr:conditional” element will be activated and then be

rendered. In fact, the “lsr:conditional” element will be executed after the system has

been running for 19 seconds.

<sceneUnit ref=”stream1” time=”14s”>

<lsr:NewScene>

 ……

 <lsr:conditional begin=”5s”>

 ……

 </lsr:conditional>

 </lsr:NewScene>

</sceneUnit>

After introducing the base concepts, we continue to describe the object-based

timing model. All the elements in a scene unit are divided into two different types of

objects. One is what we call time-static object, while the other is time-dynamic object.

A time-static object will be rendered immediately when the scene it belongs to is

rendered. It is consistently rendered and its spatial attribute and temporal attribute

never change. Contrarily, a time-dynamic object needs to be activated by time or

The time axis
NewScene x

SceneTime(x) = MediaTime(x) - MediaTime(NewScene)

some events. A time-dynamic object can be activated by the events such as

mouseclick, keyboard button down, an animation’s ending and so on. For example, if

a user clicks an image in a scene, another image may be activated and then will be

rendered in the scene. The second image is that what we call a time-dynamic object

because it is activated sometime by the user’s click event. Time also can activate

some objects in a scene. For example, the “conditional” element can be activated by

time. The instance in previous section shows that the “conditional” element will be

activated in 5 seconds after the scene is rendered.

In fact an object may have not time attribute inherently, but we can assign a time

value to it as its rendering time. For a time-static object, we set its rendering time to

zero that means it will be represented immediately when the scene it belongs to is

rendered, and it is always rendered until deleted by some command or another new

scene starts. For a time-dynamic object, there are two cases: (i) If it is activated by

time, we set the trigger time value as its rendering time. We still use the above

instance of a scene fragment. At scene time 5s, a conditional element is activated, and

it inserts an image into current scene. In this instance, the rendering time value of the

inserted image is set to 5s. (ii) If the time-dynamic object is activated by events, we

do not know when it will be represented. Its rendering time is uncertain, so we set it

infinity, which means that the object will not be rendered whenever the current scene

time is. But if the corresponding event happens, the rendering time of the object

should be changed to current scene time. As a result, this object could be represented

now.

So in this system, we first check that if an object is time-static or not. If so, its

rendering time should be set to zero. Then the object is stored and rendered

immediately. If it is a time-dynamic object and will be activated by event, its

rendering time should be set infinity. The object will not be represented until

corresponding event happens. After that, this object can be represented. If the time-

dynamic object is not activated by event but time, its rendering time equals to the time

when it is activated in the scene(such as begin=”5s”), and it will not be represented

until current scene time value is not less than this object’s rendering time value.

Figure 4 is a flow chart.

Get a scene object

Time-Static Object?
Set its rendering

time to zero
Yes

Set its rendering time to

infinity

Activated by event?

No

Yes

Trigger event

happened?

No

Set its rendering time to

the time when this event

happens

Yes

Render the object

Set its rendering time

to the time when it is

activated

No

 Current scene time is less

than its rendering time?

No

Yes

Figure 4: Flow chart

2.5 Event Management

In a rich-media environment, users can interact with the objects in a scene. For

instance, users can click on an image or a title in order to trigger some other events

which will change the scene. So the application needs a robust event management to

make sure the system is running correctly when user events happen.

The strategy is to build an event container. In current scene all the available events

and its information are kept in this container. When the scene units are parsed,

terminal could get all the available events information of this scene, such as a click on

an image at some time. At the same time, if a user event is captured by the terminal,

its information will be put into an event queue. When the queue is not empty, each

event in the queue will be compared with the event in the pre-build event container. If

the condition of the captured event matches that of some event in the container,
some operations will be processed by the handler of this event. When the event has

been processed, it will be removed from the queue and then the next captured event

will be dealt with. Every time the scene makes some changes, it will be repainted. The

algorithm shows below:

While(True)

{

If(eventQueue is not empty)

{

Get the first event information from the eventQueue;

For(every event in the event element container)

{

If(captured event matches some event condition in this container)

 {

Make corresponding changes to current scene;

Repaint current scene;

 Break;

}

 }

Remove the first event information from the eventQueue;

}

}

3 Demo of the Scene Representation

Below we show a video navigator scene in a mobile phone [10]. What we see first is

some animations (Figure 5 and Figure 6) and then we enter a video navigator scene

(Figure 7). There are some introductions to every video program (Figure 8), and if

you click an image in the scene the corresponding video program will play (Figure 9

and Figure 10).

Figure 5: Scene A Figure 6: Scene B

Figure7: Navigator scene Figure 8: Preview of one video

Figure 9: Loading one of the video Figure 10: Video is playing

4 Conclusion

A scene representation application is described in this paper. We discuss scene

parsing strategies, propose an object-based timing model, and design user interaction

management. In this feature-rich environment, consumers could have good

experiences. Besides, users also can get more information through a multimedia scene

than traditional audiovisual materials. In the future scene representation application

may be used in Web TV, mobile TV and IPTV, and consumers could watch TV

program in an interactive environment. Although there are still many problems that

need to be solved, it is no doubt that the scene representation application would have

a bright future.

5 Acknowledgment

This work is based on LASeR reference software from MPEG [10]. It is a part of the

WIM TV Beijing Olympics Trial of Digital Media Project and was supported by the

National Key Technology R&D Program [2006BAH02A10 and 2006BAH02A13] of

China .

References

1. ISO/IEC 14496-20, Information technology – Coding of audio-visual objects–Part 20:

Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format

(SAF).

2. Filippo Chiariglione, Tiejun Huang, Hyon-Gon Choo, Streaming of governed content – Time

for a standard.

3. W3C, Scalable Vector Graphics (SVG) 1.1 Specification.

4. W3C, Synchronized Multimedia Integration Language (SMIL 2.0)-[Second Edition].

5. WIM TV Beijing Olympics Trial: http://www.wimtv.net.

6. L. Chiariglione, Impact of MPEG standards on multimedia industry, Proc. IEEE, vol. 86, pp.

1222–1227, Jun. 1998.

7. Digital Media Project (DMP). http://www.dmpf.org/.

8. Information Technology–Coding of Audio-Visual Objects–Part 11: Scene Description and

Application Engine, ISO/IEC 14496-11.

9. Information Technology–Multimedia Content Description Interface–Part 1: Systems,

ISO/IEC 15938-1.

10. The MPEG-LASeR reference software.

11. Apache Software Foundation, Apache Tomcat, http://tomcat.apache.org/.

