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Abstract—This paper presents an efficient VLSI architecture 

for H.264/AVC Content-Adaptive Binary Arithmetic Code 
(CABAC) decoding. We introduce several new techniques to 
maximize the parallelism of the decoding process, including 
variable-bin-rate strategy, multiple-bin arithmetic decoding and 
efficient probability propagation scheme. The CABAC engine 
can ensure the real-time decoding for H.264/AVC main profile 
HD level 4.0. Synthesis results show that the multi-bin decoder 
can be operated up to 45MHz, and the total logic area is only 42K 
gates when targeted at TSMC’s 0.18um process. 
 

Index Terms—CABAC, parallel architectures, real-time, video 
coding. 

I. INTRODUCTIONS 
Improvements in advanced video coding technology push 

the consumer video products into the trend of higher quality, 
more functionality and lower cost, covering more applications 
such as TV broadcasting, disc storage and wireless video 
services. H.264 [1] is the newest version of the international 
video coding standard, which is developed jointly by ITU-T 
Video Coding Expert Group (VCEG) and ISO/IEC Motion 
Picture Expert Group (MPEG), and is also referred to as 
MPEG-4 Advance Video Coding (AVC). Compared with 
previous video coding standards, H.264 adopts a series of 
innovative coding tools including variable block size, finer 
inter/intra prediction resolution, more reference frames, 
quarter pixel interpolation, directional intra prediction, 
adaptive in-loop de-blocking filter and so on [2]. Those tools 
can improve the coding efficiency by up to 3dB over a wide 
range of bit rates and video resolutions, which means 50% 
communication bandwidth and storage capacity can be saved 
at the same visual quality [3]. However, high coding 
performance comes at the price of high computation 
complexity.  The complexity of H.264 encoder is two times 
higher than that of MPEG-4 simple profile, and ten times for 
decoder [3].  

Among those novel coding tools, CABAC is a significant  
revolution [2]-[4]. It can save the bit rate by up to 14% on 
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average at the same video quality, compared with the other 
entropy coding tool such as Context-based Adaptive Variable 
Length Coding (CAVLC). CABAC also introduces high 
system implementation complexity for both encoder and 
decoder. Researches show that it is extremely arduous for 
General Purpose Processor (GPP) and Digital Signal 
Processor (DSP) to perform CABAC real time 
encoding/decoding [3], [12]. The highly recursive arithmetic 
coding process and complex data dependency in context 
adaptation limit the possibility of parallelism in hardware 
implementation, especially for high-resolution video 
applications. 

Optimized encoder architecture for adaptive binary 
arithmetic coding is widely discussed [5]-[10]. Unlike the 
encoding process, arithmetic decoding (AD) does not have the 
luxury of allowing slice-level parallelism. This makes it more 
difficult to design high performance CABAC decoding 
engines. Jian-Wen Chen [11] implemented a full hard-wired 
CABAC decoder, which could decode the CIF video in real 
time. Wei Yu [12] improved the decoding engine with several 
techniques, such as context model register grouping and 
multiple-bin post processing and so on. Thus Wei’s decoder 
could process videos at D1 resolution in real time. Chung-Hyo 
Kim [19] introduced the most probable prediction method to 
decode more bins in one decoding loop. Hendrik Eeckhaut [20] 
speeded up the table accessing delay by precalculation. 

The key strategy of the previous CABAC decoders is all 
bin-by-bin decoding. Even in Wei’s and Kim’s multiple-bin 
decoding scheme, the parallel decoding bin number is small. 
To fully exploit the possible parallelism of H.264 CABAC, 
we proposed our multiple-bin decoding scheme, which can 
decode up to 16 bins in parallel. Constant-bit-rate decoding 
strategy can guarantee the system real time requirement in the 
theoretically worst cases.  Efficient system level design 
largely reduces the overall complexity while maintaining the 
system performance. We make the best of H.264 CABAC 
characteristics to efficiently design our decoding engine 
architectures, including multiple-bin arithmetic engine, 
probability propagation module and update circuits. 
Implementation result shows that the proposed engine can 
process H.264 main profile level 4.0 in real time at the price 
of slight area increase.  

In the following, we first review the CABAC algorithm of 
H.264 in section II, where a thorough analysis on real time 
requirement is also presented in this section. Section III 
introduces the key principle of the proposed scheme, 
including variable-bin-rate strategy and multiple-bin decoding 
process. Detailed architecture and optimization are described 



 

in section IV. Implementation and experimental results are 
shown in Section V. And Section VI concludes the paper. 

II. CABAC ALGORITHM 
The inherently sequentially organized processes of adaptive 

arithmetic coding make it difficult to implement high-
performance architecture by adopting parallelism or pipeline. 
To maximize the parallelism, careful analysis of CABAC 
algorithm is necessary. 

A. Context-Based Adaptive Arithmetic Coding 
Before H.264 CABAC, hardware-based binary arithmetic 

coders are developed, such as IBM Q-coder [15] and QM-
coder [16], M-coder [14], Z-coder [13], MZ-coder [8] and 
CABAC [4]. They reduce the complexity by the features as 
low-complexity, multiplier-free, and table-based status update.  

H.264 CABAC consists of three elementary processes: 
binarization, context modeling, and binary arithmetic coding.  

1) In the first step, a given non-binary valued syntax 
element (SE) is uniquely mapped to a binary sequence, a so-
called bin string. Each bin can be either 0 or 1. To make our 
statement clear, we call one output bit of arithmetic decoder as 
a bin, and one input bit as a bit. Binarization is an important 
pre-processing step to reduce statistically the alphabet size of 
SE to be encoded. CABAC adopts an efficient binarization 
scheme which can significantly reduce implementation 
complexity. On one hand, most probable symbols are 
represented by short bin strings to minimize bin decoding 
processes; and on the other hand, CABAC (almost) relies on a 
few table-free bin string types: unary code, truncated unary 
code, k-th order Exp-Golomb code, and fixed-length code. 

2) One of the most important properties of arithmetic 
coding is the possibility to utilize a clean interface between 
modeling and coding. H.264 CABAC defines 399 context 
models to track the conditional probability of different bin of 
different SEs under the condition of certain context 
information. Each probability is represented by a 6-bit status. 
And the most probable value of each context bin is also stored 
in context model. Probability status is updated using fixed 
probability transition table transIdxLPS and transIdxMPS 
described in [1] and [4]. If the probability status transits to 
zero and the next bin to be coded is not equal to the stored 
most probable value, the most probable value is changed to its 
reversion (0 to 1 or 1 to 0).  

3) Binary arithmetic coding is based on the principle of 
recursive interval subdivision that involves the multiplication 
operation (1). When we process one bin, the given interval is 
divided into two sub-intervals which are associated with least 
probable symbol (LPS) and most probable symbol (MPS) 
respectively. The LPS sub-interval is derived by:  

LPS LPSR R p= ⋅                              (1) 
and the MPS sub-interval is RMPS=R-RLPS, where R is the 
original interval size and LPSp  is the probability of LPS. 
Each bin goes through one interval division process and the 

binary representation of the final interval constitutes the coded 
bit-stream. CABAC replaces the complex multiplication (1) 
with a look-up table rangeTabLPS [1]. 

We put emphasis on the CABAC decoding process in the 
following. One H.264 syntax element is presented as a string 
of bins. Different bins may have different context information. 
Context information of all the syntax elements is stored in the 
context table which is indexed by context index (ctxIdx). For 
a certain bin whose index in the bin string is binIdx, its ctxIdx 
is determined by the binIdx, the syntax type and neighboring 
decoded information. Context table contains two kinds of 
information used for arithmetic decoding. The first one is the 
probability status (pStatus) which is a uniformed integer to 
indicate the probability of the case that the decoding bin is 
MPS. The second one is MPS value (valMPS) which is a 
binary value to indicate whether the MPS is 1 or 0.  

RangeIdx=(Range>>6) & 3
RangeLPS = rangeTabLPS[pStatus][RangeIdx]
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Fig.  1. Bin decoding process 

 
Fig. 1 shows the complete decoding process for one bin. 

The decoding process has three steps. In step one, context 
information is prepared as the top two boxes in Fig. 1. The 
pStatus and valMPS are fetched from context table. In step 
two, arithmetic decoding is performed for one bin. Arithmetic 
decoder has two internal status variables. The one is Range 
which indicates the current interval width as R in (1). Range is 
split into RangeLPS and RangeMPS by rangeTabLPS and 
pStatus. The other is Offset which is determined by input bits, 
and the comparison of Offset and RangeMPS determines the 
output bin value. If Offset falls into the LPS sub-interval 
(Offset >= RangeMPS), one LPS is decoded, new Range is set 
to RangeLPS, and pStatus of current context model is updated 



 

using table transLPS. Otherwise (Offset < RangeMPS), one 
MPS is decoded, new Range is set to RangeMPS, and pStatus 
of current context model is updated using table transIdxMPS.  

Renormalization and output generation is processed in step 
three. In renormalization stage, the Range and Offset perform 
left-shift operation(s) until Range exceeds half of the total 
interval width (HALF_R). New input bits are read as the 
lowest bits of Offset during renormalization. The input bit 
count is equal to the number of bits that Range and Offset 
have shifted. For example, in Fig. 2(a), Offset0 is less than 
RangeMPS, a MPS bin is decoded. Offset is unchanged, 
assuming that Range1 is larger than HALF_R, and no 
renormalization is needed here. In Fig. 2(b), Offset0 is larger 
than RangeMPS, so a LPS bin is decoded. And because 
RangeLPS is less than the HALF_R, Range and Offset are 
renormalized. RangeLPS and the Offset0 are scaled up by 2 
times. The proportion of the Offset in RangeLPS interval is 
almost kept, except for the lowest bit which is read from input 
bit-stream. 

RangeMPS

RangeLPS

Offset1

Range1

Range0

bin0=MPS

RangeMPS

RangeLPS

Offset0

Offset1

Range1

Range0

bin0=LPS
one input 

bit

Offset0

(a) MPS case (b) LPS case  
Fig. 2. Bin decision and renormalization 

 
The decoded bin is concatenated with the previous decoded 

bin string. If the newly generated bin string matches one of the 
binarization patterns of currently decoding SE, the decoding 
process of current SE is finished; otherwise binIdx is 
increased by one and more bins are decoded for the current SE.  

B. Data Dependency Analysis 
As described in Section II.A, three major data dependencies 

are extracted as follows: 
 Renormalization is dependent on range update. 
 Probability transition is dependent on bin decision 
 Context switching is dependent on decoded bin 
These three data dependency relations lead to three 

recursive computation loops, which can hardly be sped up by 
pipelining, and thus largely limit the system performance.  

Looking more closely, we can find that there are three 
directional loops in Fig. 1 and Fig. 3. The loop1 is located in 
arithmetic decoder engine. Table rangeTabLPS generates 
RangeLPS, subtractor generates RangeMPS, comparator 
generates bin decision, and then renormalization generates 
new range. The delay of the comparator can be hidden into 
renormalization, if we renormalize both RangeLPS and 
RangeMPS as divided range and select the two groups of 
range/offset pairs with bin decision result. And the delay of 
subtractor can also be reduced when using the rangeTabMPS 
table to generate RangeMPS directly from pStatus and range. 

Renormalization can be implemented by an efficient parallel 
leading-one detection circuit and a barrel shifter. But the table 
accesses and the renormalization process can not be done 
concurrently, and they are both time-consuming calculations. 

The loop2 is the probability status update loop. The new 
values of pStatus for both LPS and MPS are generated by 
looking up transIdxLPS and transIdxMPS simultaneously. 
The final pStatus is determined by bin decision result. To 
significantly reduce the effect of access latency of context 
model RAM, pre-fetching cache [9] and register grouping [12] 
are proposed in CABAC designs.  
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Fig.  3. Data dependency graph of CABAC 

 
The last and most complex loop3 is context updating loop. 

There are totally 399 context models, and the contexts of 
successive bins vary according to many factors such as current 
SE type, neighboring decoded SE value, bin index and 
binarization pattern. Although most syntax elements are 
binarized by four basic codes, it is still difficult to perform 
both SE boundary detection and SE switching in one clock 
period.  

The three iterative computation loops prohibit the deep 
pipeline scheme from achieving high system performance. 
Look-ahead computation is a basic method to speed up a 
recursive FSM [17] [18]. But the speed-up factor is limited by 
rapidly increased complexity. Multiple-bin arithmetic 
decoding (MBAD) schemes are adopted in previous works 
[10] [12], but the performance is limited to at most 3 bins per 
cycle, and can not meet the requirement of HD applications. 
In our paper, variable-bin-rate multiple-bin decoding scheme 
is proposed which can effectively break the three iterative 
loops at bin level.  

C. Useful Characteristics of CABAC 
In order to efficiently de-couple the dependency, we made 

several useful observations on H.264/AVC CABAC:  
1) One LPS bin or bypass bin consumes at least one input 



 

bit. The RangeLPS is always less than 0x100 for all context 
models. So if one LPS bin is decoded, new range needs at 
least one left-shifting operation to return to the working 
interval [0x100, 0x1FF]. One bypass decoding consumes one 
bit as well. Observation 1) is very important for our scheme. 
We can assume that all the internal (except the last) bins 
decoded by one input bit are MPSs. 

2) One coefficient level (the most frequently occurred 
syntax element) consumes at least one input bit. Coefficient 
levels include two SEs, abs_level and sign_flag. The 
abs_levels are separated by bypass-coded sign_flags. Due to 
1), bit consumption occurs at sign_flag. In addition, suffix 
bins of concatenated unary/k-th order Exp-Golomb (UEGk) 
are bypass-coded, and this limits the maximum number of bins 
of one coefficient level to sixteen in one clock cycle.  

3) Overwhelming majority of coded bits are assigned to 
three kinds of SEs (referred to as MB data SE): intra 
prediction modes, motion information and residual 
information (up to 95% of total bits on average). This gives us 
a hint to implement these SE decoding by separating them 
from other macroblock (MB) SEs (referred to as header SEs). 

4) As for context models, some syntax elements (referred to 
as category-one) use independent context models for 
successive bins. Category-one SEs include significance map 
and reference index. Separate context models are accessed 
when decoding consecutive bins. Newly updated pStatus will 
not be used when decoding one input bit. So the probability 
update processes can be done together after one bit is decoded. 

5) Some other syntax elements (referred to as category-two) 
use the same context model for a series of bins, such as 
coefficient level, motion vector difference and intra prediction 
modes. No context switching is needed for these bins, but the 
pStatus of consecutive bins are derived by traversing a series 
of status transition tables (transMPS). 

6) The requirement of decoding speed can be derived by 
several aspects. But the bin-rate constraint is much stricter 
than bit-rate constraints. So if we can decode one input bit per 
cycle, the required system frequency can be reduced 
significantly compared with constant-bin-rate schemes. The 
following sub-section analyzes the requirement in details. 

D. Real-Time Decoding Requirement 
H.264 defines a series of profiles and levels. Profile defines 

the coding tool set that a decoder must support, and level 
defines the resolution & bit rate. Maximum bit rates are 
defined in levels for different video resolutions, compression 
ratios, etc. High definition level 4.0 limits the maximum bit 
rate to 20Mbps, which is enough for most HD compressed 
videos. But arithmetic coding allows assigning fractional bit to 
a certain SE bin, so that one input bit can be theoretically 
unfolded into unlimited bins after decoding. To make decoder 
implementable, H.264 limits the maximum bin number of one 
Network Abstraction Layer (NAL) unit to 

(32/3) / 32NumBytesInNAL PicSizeInPel× +     (2) 
where NumBytesInNAL is the size of one coded NAL unit in 

bytes, and PicSizeInPel is the total pixel count in one frame. 
But there are still two contradictions for designing constant-
bin-rate CABAC decoder using the bin count limit in (2): 

1. H.264 does not give the maximum bit count for specific 
NAL units explicitly. We can derive the maximum bit count 
for one picture by the minimum compression ratio and 
maximum frame size defined for the profile and level. For 
high definition level 4.0, the required decoding speed is as 
high as 268Mbin/s, which is almost impossible for the 
implementation of the three iteration loops with 0.18µm 
technology.  

2. The bit count limit above is over-estimated because the 
bit-rate of level 4.0 is limited to 20Mbps. If we sum up (2) of 
all NALs in one period, Hypothetical reference decoder (HRD) 
model promises that bit rate fluctuation will not lead to 
decoder input buffer overflow The sum of first parts of (2) is 
bounded by bit-rate. Theoretically, small amount of bits may 
be unfolded into a large amount of NALs. Unlimited NAL 
number causes that the sum of the second parts of (2) is not 
predictable. 

Finally we summarize that the required processing speed 
for constant-bin-rate decoding is about 13 times (268M/20M) 
more than that of constant-bit-rate decoding to guarantee the 
hard real-time decoding in the worst cases for H.264 HD level 
4.0. 

III. OVERVIEW OF THE PROPOSED SCHEME 
The main idea of our proposed decoding scheme can be 

summarized as variable-bin-rate strategy and multiple-bin 
arithmetic decoding.  

A. Variable-Bin-Rate Strategy 
As we have discussed in section II-D, it is very difficult to 

decode HD videos with constant-bin-rate scheme. Thus we 
propose our variable-bin-rate scheme. SEs are separated into 
two sets: the first one is MB data SEs, such as intra prediction 
modes, motion vector and reference index, and residual 
information; and the second one is header SEs, including slice 
level flags, mb_type, sub_block_type, etc. 

For the first set, it makes up the overwhelming majority of 
the input coded bits and also contributes to the major part of 
computation complexity. And meanwhile context model 
switch pattern is relatively simple for these SEs. So we use 
constant-bit-rate scheme to speed up the MB data SEs.  

For the second set, computational workload is not very high, 
and header parsing is a highly irregular process especially in 
SE switching and SE boundary detection. So we adopt 
traditional constant-bin-rate scheme to reduce system 
complexity while also maintaining real-time processing. 

In our constant-bit-rate scheme, the proposed decoder 
processes one input bit in one clock cycle. All the decoded 
bins corresponding to the input bit are output in parallel. The 
number of bins output in one cycle varies from 0 to 16, 
according to the current range/offset pair and the successive 
probability status. If the initial range of current bit is less than 
HALF_R, AD engine reads one more input bit to the offset 



 

value and doubles the range value, with no bins outputting in 
this cycle. The main advantage of constant-bit-rate scheme is 
that the renormalization process is saved, since one and only 
one bit is consumed in one cycle.  

The bin overflow problem exists in the case that we can not 
fully consume one bit in one cycle when the bit contains more 
than 16 bins. According to the observations in section II-C, 
the maximum bin number for coefficient level information is 
16, so the overflow problem will not occur in coefficient level 
decoding. For intra prediction modes, motion vectors and 
reference indexes, there are no bypass coded bins for bit 
boundary within successive SEs, and hence bin overflow 
problem may exist. Our decoder generates a termination signal 
when one SE is fully decoded (binarization pattern is 
matched). Because each of the mentioned three SEs contains 
no more than 16 bins, termination signals of the trailing bins 
are certainly to be active. The bin overflow problem can be 
solved because we don’t read new input bit when one of the 
termination signals of valid decoded bins is active in the clock 
cycle. These cycles are referred to as switching cycles. 
Another kind of switching cycle occurs when decoding 
significant maps, because there are totally 32 bins for one 
block at most. As we will show below, the effect of switching 
cycles to system performance is acceptable.  

For the header SEs, we adopt the traditional one-bin-per-
cycle method, but the working frequency is the same as 
constant-bit-rate scheme which is relatively easy to achieve. 
Constant-bin-rate scheme can not certainly guarantee 
consuming one bit per cycle in all cases. The maximum cycles 
cost in one SE is the maximum bin number, and these cycles 
are referred to as redundant cycles. Redundant cycles don’t 
affect system performance much either. 

B. Multiple-Bin Arithmetic Decoding 
The basic principle of arithmetic coding enables non-

integer bits to be assigned to SE bins, so one bit may be 
potentially unfolded into multiple bins. The three computation 
loops described in section II-B limit the possibility of 
accelerating multiple-bin decoding with parallel and pipelined 
schemes. However, by making use of the combination of the 
observations in section II-C and constant-bit-rate scheme, the 
three computation loops can be totally broken into bin level, 
and hence most operations in the three loops are parallelized.  

As described, one LPS bin or bypass bin consumes at least 
one input bit, so the bin value tree of all possible 16 output 
bins within one bit is depicted as below (Fig. 4). 
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Fig.  4. Output transition tree of one input bit 

In the tree of Fig. 4, each dotted node represents one 
arithmetic decoding unit of one bin, and each distinct path 
from the root to one of internal nodes or the leaves stands for 
a string of output bins generated by current bit. There are four 
cases that may terminate the traversing in the tree: 

1) Offset value is larger than RangeMPS. An LPS occurs in 
this case, current bit is consumed. The output bin string is a 
single LPS or a series of MPSs followed by one LPS. 

2) Range value is less than HALF_R. Range reduction 
causes the bit consumption. The output bin string is a series of 
MPS. 

3) Current bin is bypass coded (indicated by bypi). Current 
bit is consumed. The output bin string is a series of MPS 
followed by one bypass value (whether offset is larger than 
the half of range). 

4) Current bin is a termination bin (flagged by termi). No 
new bit is read, and no shifting is done when updating range 
and offset value. The output bin string is a series of MPSs. 
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Fig. 5. Comparison between bin-by-bin and bit-by-bit scheme 
 
Fig. 5 demonstrates case 2) and case 1) described above. In 

bin-by-bin scheme, the first three MPS bins are decoded 
serially and case 2) occurs. RangeMPS2 is less than HALF_R, 
and renormalization is performed and one input bit is 
consumed. As we can see in Fig. 5, when a series of MPS 
occur, Offset will be unchanged and Range is updated by each 
RangeMPS serially. In our multiple-bin scheme, a series of 
RangeMPS (up to 16) are calculated in one cycle, and 
compared with HALF_R and Offset in parallel. In case 2), the 
largest one of RangeMPSs which are less than HALF_R is 
selected as new Range to perform renormalization. The 
selection also determines the valid decoded bin count. The 
successive three bins are two MPSs and one LPS, and case 1) 
occurs. In case 1), the LPS interval [RangeMPSi+1, 



 

RangeMPSi] in which the Offset falls is selected as new 
Range to perform renormalization. Our multiple-bin scheme 
consumes only one bit per cycle. Two cycles are used to 
renormalize the Range to be larger than HALF_R as Fig. 5. 
Case 3) and case 4) are similar with case 2). 

In our scheme, when one certain bin is to be decoded, all 
previous decoded bins corresponding to the bit are assumed to 
be MPSs, thus the context switching and probability update 
can be directly processed without full decoding. As to the first 
computation loop (in section II-B), renormalization process is 
omitted, and RangeMPS is set directly to range value used by 
the following bin. As to the second loop, probability status 
can be derived by iteratively traversing the transIdxMPS table, 
and the table can be replaced by a saturated incrementer unit. 
As to the third loop, multiple context indexes for different 
bins can be derived totally independent of the AD process. 
The three computation loops are broken by the MPS 
assumption. 

Compared with the constant-rate 16-bin decoding, constant 
bit-rate decoding can have a significant low complexity. The 
output transition tree of full constant-rate 16-bin is a complete 
binary tree which contains as many as 65535 AD units. In 
these AD units, renormalization can not be saved. Our 
constant-bit-rate scheme decodes one bit at one clock, the 
three computation loops is moved to bit level (not bin level). 
Bit level loop is much looser than bin level loops in 
computation complexity, because firstly frequency 
requirement of these bit loops is significantly lower, and 
secondly computation latency of each AD unit is also largely 
reduced.  

C. System Level Architecture 
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Fig.  6. System level architecture 

 
Fig. 6 shows our system architecture to support variable-

bin-rate CABAC decoding. For the context model 

management, we adopt the two-level memory architecture as 
[12]. Total 399 context models are stored in on-chip SRAM, 
with the size of 399x7 bits (six bit for probability status and 
one for MPS value). Local context register groups (LCRG) 
are used to speed up the accessing of the context model. All 
context information which has the possibility to be used in 
current block is preloaded into local context registers from 
context model RAM. After decoding one bit, some context 
registers may be updated by probability propagation (PP) 
modules, but these new changes will not be written back to 
context model RAM until different context models are needed 
to be loaded into local context registers for next block.  
 Four dedicated PP modules for probability propagation of 
intra modes, motion information, significant map, and 
coefficient levels are shown in Fig. 6. These four modules 
generate up to 16 probability status (pSi) and MPS values 
(valMPSi) of successive bins. Two major tasks in these 
modules are SE switching and probability update. Dedicated 
logic optimization is done for accelerating SE switching 
process when MPSs occur. And new probability of the same 
context model is generated by looking up the transIdxMPS 
table (replaced by saturated incrementer unit). The PP 
modules also generate bypass flag (bypi) and terminal signal 
flag (termi) for MBAD engine. 

Four PP modules share one MBAD by local probability bus. 
MBAD performs 16 bin decoding process serially. The update 
for offset and range is done in MBAD bin by bin. And output 
updating information is also generated progressively. They are 
valid flag (ti) to indicate whether the result of current bin is 
valid (the valid bins constitute the bin string decoded by 
current bit), output bin value (bini), and a flag bit (mpsi) to 
indicate whether current bin is MPS. The updating 
information is sent to local update bus, and PP modules use 
them to update initial SE and initial context information for 
next bit decoding. 

All header information decoding is processed in header 
decoding engine (HDE) with context model RAM. Traditional 
constant-bin-rate decoding scheme is adopted in HDE as [11] 
[12] and Fig. 3. The values of range and offset in HDE and 
MBAD are swapped when SE switching between the two 
engines.  

D. System Performance Analysis 
Previous CABAC decoders have not given a quantitative 

performance analysis for real-time decoding, and most of 
them conclude their real-time guarantee by simulation result.  
As performance requirements vary a lot for different video 
scenes, we give a quantitative analysis in the worst cases for 
our variable-bin-rate scheme.  

H.264 level 4.0 limits the bit-rate to 20Mbps. If our MBAD 
engine can fully decode one bit per cycle, the required 
working frequency is only 20MHz. But as described in section 
III-A, we can not decode one bit in every cycle due to 
redundant cycles and switching cycles. In the worst case, we 
assume that all the syntax elements that are possible to induce 
redundant cycles or switching cycles do not consume any bit 



 

at all. The total additional frequency required can be 
calculated by summing up the total redundant cycles and 
switching cycles needed per MB and multiplying the sum with 
MB rate. Header information such as mb_type and 
sub_partition, is decoded one bin per cycle, so the redundant 
cycles are counted as the maximum bin count of the 
corresponding SE. Intra modes, motion information and 
significant map are bounded by termination signals block by 
block. Hence at most 16 switching cycles are consumed by 
one type of SEs in one MB. In a word, due to the redundant 
cycles and switching cycles, the required system frequency 
increases from 20MHz to 42MHz. But as we will see below, 
the frequency requirement of the three bit-level computation 
loops is easy to meet. 

 
TABLE I 

SYSTEM FREQUENCY REQUIREMENT 

Syntax Element Redundant 
cycles / MB 

Switching 
cycles / MB 

Frequency required 
(MHz) 

mb_type 7 - 7x0.24=1.7 
sub_patition 6x4 - 24x0.24=6 (inter) 
mb_qp_data 2 - 2x0.24=0.5 
coded_block_pattern 18 - 18x0.24=4.5 
other headers 4 - 4x0.24=1 
Switch in intra mode - 16 16x0.24=4 (intra) 
Switch in ref_idx - 16 16x0.24=4 (inter) 
Switch in mvd - 16 16x0.24=4 (inter) 
Switch in sig map - 2 2x0.24=0.5 
constant bit decoding - - 20 (level 4.0) 

Total   42(inter), 32(intra)
The maximum MB rate is 0.24M/s as defined in H.264 level 4.0 

 

IV. DETAILED ARCHITECTURE DESCRIPTION 
In this section, we discuss our proposed architecture in 

detail. We have grouped the data SEs into two categories in 
section II-C. Significance map and coefficient level are the 
most typical representatives of the two categories respectively. 
And in addition, these two SEs constitute the most part of 
input bit rate. We put emphasis on these two PP modules. 
Other PP modules such as motion information and intra 
prediction mode, are similar to them. Detailed architecture of 
MBAD is also introduced here. 

A. Probability Propagation of Significance Map 
Significance map consists of two types of SEs, significance 

flag (SF) and last significance flag (LF). SF indicates whether 
the coefficient is non-zero, and LF means whether there is no 
more non-zero coefficient in current block. Each SF or LF is 
binarized as one bin. The context indexes of SF and LF bins 
are determined by the coefficient position in the block (0~14).  
  

TABLE II 
VARIABLE TRANSITION RELATIONS IN SIGNIFICANCE MAP 

Current si Decoded bin bi Next si+1 Next pi+1

0 0 1 pi+1 
0 1 1 pi+1 
1 0 1 pi+1 
1 1 0 pi 

 

As category-one SE, successive bins of significance map 
use different context models. Thus the context switching is the 
main task for significance map PP. We define two iteration 
variables: si (indicates whether current bin is SF, 1 for SF and 
0 for LF), and pi (indicates the coefficient position of current 
bin). The transition relation can be summarized in Table II. 

If current SE is SF and the current decoded bin value is 1 
(significant), next SE is LF; otherwise next SE is SF, and 
coefficient position increases by one. If current SE is LF, next 
SE is SF and coefficient position increases by one. Table II 
can be reduced to the following formulas according to the 
truth table (TABLE II):  

1

1 1

~ ( )i i i

i i i

s s b
p p s

+

+ +

= ⋅
= +

                                     (3) 

Only one NAND and one 4-1 bit adder operations are needed 
for one stage of iterator variable propagation. 

Concatenating the 16 stages, we get the architecture of 
significance map PP module (Fig. 7). MPS values (mi) and 
pStatus (pSi) are selected from local context registers with si 
and pi. In our constant-bit-rate scheme, MPS value is used as 
decoded bins in each bin stage. New SE flag and new position 
is updated by (3).  
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Fig.  7. Architecture of PP for significance map 

 

B. Probability Propagation of Coefficient Level 
As described in section II-C, coefficient level consists of 

two SEs: UEG0-binarized abs_level and bypass-coded sign 
(Fig. 8). UEG0 binarization consists of a TU-coded prefix 
with maximum length 14 and an EG0-coded suffix [2]. 

0 1 2 13

prefix suffix

... 14 15 ...

TU coded EG0 coded

ctx1 bypass

bin 
index

ctx0

 
Fig.  8. Binarization of absolute value of coefficient level 

 
The context indexes of abs_levels are adaptively updated 

with previously decoded levels. Two context models are used 



 

in one coefficient level, one for the first bin (pSb0) and one for 
2nd~14th bins (pSb1); suffix bins are bypass-coded. The pSb0 is 
determined by numDecAbsLevelGt1 and 
numDecAbsLevelEq1, and pSb1 is determined by 
numDecAbsLevelGt1 only.  
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Fig.  9. Architecture of PP for coefficient levels 

 
We use bi to indicate the index of the bin decoded in the ith

 

bin stage. Due to termination signal of significance map and 
bypass-coded sign_flag, the first bin of one abs_level must be 
located in the first bin stage. According to the initial index b0, 
pSi is generated by traversing the transIdxMPS tables (M 
tables in Fig. 9). And bypass flag bypi is also generated by the 
corresponding index. After decoding one coefficient, pS0 and 
pS1 are updated by context models in the local context 
registers. 

C. Multiple-bin Arithmetic Decoding 
MBAD engine can produce up to 16 bins until one bit is 

consumed or a termination signal is asserted. The probability 
statuses of the 16 bins (pSi) are generated by PP modules. R0 
and Offset0 are the initial range and offset, which are updated 
in the previous cycle. Just as PP modules, MBAD engine also 
consists of 16 bin stages, each of which processes one bin 
arithmetic decoding. The inputs of one bin stage are current 
value of range and offset (Ri and Offseti), the probability 
status of pSi, bypass flag (bypi) and termination signal (termi) 
with i indicating the index of current bin stage. The outputs of 
one arithmetic decoding stage are valid signal (ti), MPS/LPS 
selection signal (mpsi), and decoded bin value (bini).  

If ti is equal to zero, the decoded results of current bin stage 
and all the following bin stages are not valid. That is to say, 
these output bins will not be appended to the output bin string 
and these update information will not be used by either 
R0/Offset0 update or probability update. The ti flags are 
inactive when  

(1) LPS occurs. In this case, the sign (highest) bit of the 
result of subtracting RangeMPS from Offseti is zero. 

(2) Range needs renormalization. In this case, the highest 
bit of RangeMPS is zero. 

(3) The bypass flag or termination signal is active. 
(4) The valid flag of previous bin stage (ti-1) is inactive. 
The RangeLPS value of each bin stage is generated by table 

looking up with Ri and pSi. And RangeMPS is generated by 
subtracting RangeLPS from Ri. Because all hypothesized 
decoded bins are MPSs, range value for next bin stage is just 
associated with RangeMPS value of current bin stage. 
Meanwhile, Offset value for next bin stage is equal to the 

result of subtracting RangeMPS from Offseti. According to 
the arithmetic decoding process described in Fig. 1, if Offseti 
is less than or equal to RangeMPS, the actual decoded bin is 
LPS; otherwise, the decoded bin is MPS. So we reuse the sign 
bit of the result of subtracting RangeMPS from Offseti as mpsi.  
 

 

TR0

pS0

LPS0

T
R1

pS1

LPS1

R2

LPS2

T

pS15

LPS15

Offset0 ...
[9]

t1

[9] m0

bin0mps0

[9]

t2 bin1mps1
...

[9]

[8]

t16

m15

bin15mps15t0

[8]

R15

Offset1 Offset2 Offset15

>>1

byp0

>>1

byp1

>>1

byp15

[8]

term0

[8]

term1

one bin stage

[9] m1
[9]

...

 
Fig.  10. Multiple-bin arithmetic decoding architecture 

 
Output bin is generated by the MPS/LPS decision signal 

mpsi and MPS value (mi). Because bini is equal to mi when 
mpsi is high, or bini is set to be ~mi when mpsi is low, we can 
efficiently implement the logic with an XNOR operation. 

Decoding functions of bypass-coded bin and termination 
bins are also seamlessly integrated into our MBAD 
architecture. When bypass-coded bin occurs, the threshold 
value of Offseti for making MPS/LPS judgment changes from 
RangeMPS to Ri>>1. As we can see in Fig. 10, propagation of 
range value is broken by the bypass cases. When bypass bin 
occurs, the following bin stages are bound to be invalid (ti is 
equal to 0), so the bypass MUX is omitted in range 
propagation path, and this shortens the range propagation 
delay. Termination signal directly affects ti flags to invalidate 
the following bin decoding outputs. 

Our proposed MBAD architecture is effectively designed to 
shorten the system critical path and to reduce area and power 
costs. In traditional CABAC engines, context derivation, AD 
decoding, renormalization and probability updating are 
processed in serial. If we directly map these data dependencies 
for multiple-bin decoding, it will result in a concatenated one-
dimensional path with long computation delay. If we combine 
Fig. 7 or Fig. 9 with Fig. 10, we can find that in our proposed 
architecture, pStatus/context and range/offset propagation in 
horizontal direction and bin decoding in vertical direction can 
process in parallel. Our MBAD scheme efficiently maps the 
iterative one-dimensional arithmetic decoding algorithm into 
parallel two-dimensional architecture, and thus gains 
extremely high performance with relatively low area and 
power costs. 

In addition, MBAD architecture is separated into several 
bin stages, and interconnections between stages are simple. So 
within the decoder core, most circuits are connected with local 
interconnections and the fan-out is relatively small too. This 



 

feature can largely save redundant routing area and reduce the 
wire delay as well.  

Renormalization is replaced by shifting one bit per cycle, so 
that the leading-one detection circuits and large shifter can be 
saved. Furthermore, the bit loading process can 
simultaneously conduct up to 16 bins, and the delay is 
relatively small compared with the core AD iterations. 

V.  IMPLEMENTATION RESULT 
We have implemented the proposed architecture for TSMC 

0.18µm process. The system critical path is the concatenated 
range update process during multiple MPS bin decoding. The 
maximum delay of critical path is about 22ns with total logic 
area of 42K gates (without context RAM). As we have 
analyzed in section III-D, system frequency requirement for 
real-time decoding is 42MHz. So we can decode the H.264 
high definition level 4.0 in real time (see details in Table III).  

TABLE III 
COMPARISON OF CABAC DECODERS 

Architectures Process 
(µm) 

Area 
(KGate) 

Frequency 
(MHz) 

Decoding 
Power 

Chen’s [11] 0.13 138* 200 CIF 25Hz 
Yu’s [12] 0.18 30 148.5 D1 30Hz 
Kim’s [19] 0.18 na 300 na 
Eeckhaut’s[20] na 590ALMs 105 HDTV 
Proposed 0.18 42 45 1080i 30Hz

* The area includes the context model SRAM.  

 
To compare with our multi-bin scheme, we can directly 

expand the critical loops of [12] to decode multiple bins in 
one cycle. To guarantee decoding one bit per cycle for 
significance map and coefficient levels, the expansion factor 
should be 16 and the working frequency is as low as 9MHz 
which can not meet the real time requirement for HD 
applications.  

Chen’s design is based on 0.13µm technology. 
Experientially, to implement the circuits with the same gate 
count, 0.13µm implementation is about half in area compared 
with 0.18µm implementation; but the speed is almost the same 
because of the secondary effects of deep sub-micron circuits. 
Kim’s architecture decodes one bin every three cycles, so the 
bin throughput is only 100M/s. Eeckhault implements the 
decoder on Altera’s FPGA Stratix II S60, and the logic part 
occupies 590 Adaptive Logic Modules (ALM). He claims the 
decoder can support HD applications. But as shown in the 
analysis above, it can not guarantee the performance in the 
worst cases. Reconfigurable solution is flexible compared 
with ASIC, but the high cost and high power consumption 
features make it hard to become the mainstream in industry for 
video decoding applications. As for the average performance, 
our multiple-bin scheme can achieve as high as 102Mbin/s 
according to the simulation result on typical video streams. 
The average bin-rate is comparable with previous works, but 
we can guarantee the worst case performance because bit 
fluctuation is generally smaller than bin fluctuation in the real 
world.  

Compared with previous works, our multiple-bin parallel 

decoding scheme does not induce large area cost. This is 
because that we have efficiently simplified the logic of every 
bin stage by taking the best advantages of constant-bit-rate 
strategy. MPS assumption reduces the bin selection 
computation from the exponential scale into the linear scale. 
And the circuits for generating new range are also simplified. 

In addition, due to the low working frequency of our design, 
the power consumption is largely reduced compared with 
previous works. According to the equation 2P kCV f= , we 
can estimate that the power consumption of our design is 
about 1/2.4 of Yu’s and even less compared to other works. 
The power reduction is gained by our efficient variable-bin-
rate scheme. Computation-intensive parts are paralleled using 
multiple-bin decoding scheme to reduce the working 
frequency. And low-loaded syntax elements are decoded using 
bin-by-bin scheme to avoid large increase in total area.  

Our high performance CABAC decoding engine can be 
easily integrated into a video decoder chip. CABAC decoding 
is the first stage of video decoding. The following components, 
such as IDCT and motion compensation, generally adopt 
macroblock pipeline to achieve high performance. But the 
processing cycles used by CABAC decoding vary a lot for 
different macroblocks. We can place a frame-level buffer 
between CABAC and the following components to match the 
speed variation between CABAC and following components. 

 

VI. CONCLUSION 
This paper proposes a CABAC decoding engine for H.264 

high definition real time decoding. Compared with the 
previous works, we give a thorough analysis on system 
performance requirement for real time decoding for the first 
time. This ensures our decoder engine can process real time 
decoding in the worst cases. 

In our engine, we adopt the variable-bin-rate strategy. 
Constant-bit-rate scheme is used in MB data decoding to 
reduce the system frequency requirement. And constant-bin-
rate scheme is used in header decoding to significantly reduce 
the system complexity for MBAD. The two schemes are 
combined to make our variable-bin-rate strategy very efficient. 

Multiple-bin arithmetic decoding scheme benefits a lot from 
constant-bit-rate strategy. The MPS assumption is derived by 
constant-bit-rate strategy. And the assumption reduces the 
complexity of bin selection traversing computation from an 
exponential scale into a linear one. Thus the proposed MBAD 
scheme can efficiently map the iterative one-dimensional 
arithmetic decoding algorithm into parallel two-dimensional 
architecture, and gain extremely high performance with 
relatively low area and power costs. 

Probability propagation modules are designed to facilitate 
the decoding of the four specific types of SEs. This minimizes 
the design complexity for each single PP module. Special 
characteristics of these SEs are efficiently utilized to optimize 
both context switching process and probability update process. 

The implementation result shows that our decoder engine 



 

can run up to 45MHz. This can guarantee that our decoder can 
process 1080i video of H.264 level 4.0 at 30 frames per 
second, even in the worst cases. Comparison result shows that 
the area increase of the proposed scheme is relatively small, 
whereas decoding power consumption is significantly reduced.  
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