

 Variable-Bin-Rate CABAC Engine for H.264/AVC
High Definition Real-Time Decoding

Peng Zhang, Don Xie, and Wen Gao, Member, IEEE

Abstract—This paper presents an efficient VLSI architecture

for H.264/AVC Content-Adaptive Binary Arithmetic Code
(CABAC) decoding. We introduce several new techniques to
maximize the parallelism of the decoding process, including
variable-bin-rate strategy, multiple-bin arithmetic decoding and
efficient probability propagation scheme. The CABAC engine
can ensure the real-time decoding for H.264/AVC main profile
HD level 4.0. Synthesis results show that the multi-bin decoder
can be operated up to 45MHz, and the total logic area is only 42K
gates when targeted at TSMC’s 0.18um process.

Index Terms—CABAC, parallel architectures, real-time, video
coding.

I. INTRODUCTIONS
Improvements in advanced video coding technology push

the consumer video products into the trend of higher quality,
more functionality and lower cost, covering more applications
such as TV broadcasting, disc storage and wireless video
services. H.264 [1] is the newest version of the international
video coding standard, which is developed jointly by ITU-T
Video Coding Expert Group (VCEG) and ISO/IEC Motion
Picture Expert Group (MPEG), and is also referred to as
MPEG-4 Advance Video Coding (AVC). Compared with
previous video coding standards, H.264 adopts a series of
innovative coding tools including variable block size, finer
inter/intra prediction resolution, more reference frames,
quarter pixel interpolation, directional intra prediction,
adaptive in-loop de-blocking filter and so on [2]. Those tools
can improve the coding efficiency by up to 3dB over a wide
range of bit rates and video resolutions, which means 50%
communication bandwidth and storage capacity can be saved
at the same visual quality [3]. However, high coding
performance comes at the price of high computation
complexity. The complexity of H.264 encoder is two times
higher than that of MPEG-4 simple profile, and ten times for
decoder [3].

Among those novel coding tools, CABAC is a significant
revolution [2]-[4]. It can save the bit rate by up to 14% on

Manuscript received July 1, 2007; revised November 21, 2007. This work
was supported in part by the National High Technology Development 863
program of China under Grant No. 2003AA1Z1290, and by Spreadtrum
Communication Inc.

Peng Zhang is with the Institute of Computing Technology, Chinese
Academy of Sciences, China and Graduate School of Chinese Academy of
Sciences, Beijing, China (e-mail: zhangpeng@jdl.ac.cn)

Don Xie is with the Spreadtrum Communication Inc., Beijing, China (e-
mail: don.xie@spreadtrum.com).

Wen Gao is with the Digital Media Institute, Peking University, Beijing,
China (e-mail: wgao@jdl.ac.cn).

average at the same video quality, compared with the other
entropy coding tool such as Context-based Adaptive Variable
Length Coding (CAVLC). CABAC also introduces high
system implementation complexity for both encoder and
decoder. Researches show that it is extremely arduous for
General Purpose Processor (GPP) and Digital Signal
Processor (DSP) to perform CABAC real time
encoding/decoding [3], [12]. The highly recursive arithmetic
coding process and complex data dependency in context
adaptation limit the possibility of parallelism in hardware
implementation, especially for high-resolution video
applications.

Optimized encoder architecture for adaptive binary
arithmetic coding is widely discussed [5]-[10]. Unlike the
encoding process, arithmetic decoding (AD) does not have the
luxury of allowing slice-level parallelism. This makes it more
difficult to design high performance CABAC decoding
engines. Jian-Wen Chen [11] implemented a full hard-wired
CABAC decoder, which could decode the CIF video in real
time. Wei Yu [12] improved the decoding engine with several
techniques, such as context model register grouping and
multiple-bin post processing and so on. Thus Wei’s decoder
could process videos at D1 resolution in real time. Chung-Hyo
Kim [19] introduced the most probable prediction method to
decode more bins in one decoding loop. Hendrik Eeckhaut [20]
speeded up the table accessing delay by precalculation.

The key strategy of the previous CABAC decoders is all
bin-by-bin decoding. Even in Wei’s and Kim’s multiple-bin
decoding scheme, the parallel decoding bin number is small.
To fully exploit the possible parallelism of H.264 CABAC,
we proposed our multiple-bin decoding scheme, which can
decode up to 16 bins in parallel. Constant-bit-rate decoding
strategy can guarantee the system real time requirement in the
theoretically worst cases. Efficient system level design
largely reduces the overall complexity while maintaining the
system performance. We make the best of H.264 CABAC
characteristics to efficiently design our decoding engine
architectures, including multiple-bin arithmetic engine,
probability propagation module and update circuits.
Implementation result shows that the proposed engine can
process H.264 main profile level 4.0 in real time at the price
of slight area increase.

In the following, we first review the CABAC algorithm of
H.264 in section II, where a thorough analysis on real time
requirement is also presented in this section. Section III
introduces the key principle of the proposed scheme,
including variable-bin-rate strategy and multiple-bin decoding
process. Detailed architecture and optimization are described

in section IV. Implementation and experimental results are
shown in Section V. And Section VI concludes the paper.

II. CABAC ALGORITHM
The inherently sequentially organized processes of adaptive

arithmetic coding make it difficult to implement high-
performance architecture by adopting parallelism or pipeline.
To maximize the parallelism, careful analysis of CABAC
algorithm is necessary.

A. Context-Based Adaptive Arithmetic Coding
Before H.264 CABAC, hardware-based binary arithmetic

coders are developed, such as IBM Q-coder [15] and QM-
coder [16], M-coder [14], Z-coder [13], MZ-coder [8] and
CABAC [4]. They reduce the complexity by the features as
low-complexity, multiplier-free, and table-based status update.

H.264 CABAC consists of three elementary processes:
binarization, context modeling, and binary arithmetic coding.

1) In the first step, a given non-binary valued syntax
element (SE) is uniquely mapped to a binary sequence, a so-
called bin string. Each bin can be either 0 or 1. To make our
statement clear, we call one output bit of arithmetic decoder as
a bin, and one input bit as a bit. Binarization is an important
pre-processing step to reduce statistically the alphabet size of
SE to be encoded. CABAC adopts an efficient binarization
scheme which can significantly reduce implementation
complexity. On one hand, most probable symbols are
represented by short bin strings to minimize bin decoding
processes; and on the other hand, CABAC (almost) relies on a
few table-free bin string types: unary code, truncated unary
code, k-th order Exp-Golomb code, and fixed-length code.

2) One of the most important properties of arithmetic
coding is the possibility to utilize a clean interface between
modeling and coding. H.264 CABAC defines 399 context
models to track the conditional probability of different bin of
different SEs under the condition of certain context
information. Each probability is represented by a 6-bit status.
And the most probable value of each context bin is also stored
in context model. Probability status is updated using fixed
probability transition table transIdxLPS and transIdxMPS
described in [1] and [4]. If the probability status transits to
zero and the next bin to be coded is not equal to the stored
most probable value, the most probable value is changed to its
reversion (0 to 1 or 1 to 0).

3) Binary arithmetic coding is based on the principle of
recursive interval subdivision that involves the multiplication
operation (1). When we process one bin, the given interval is
divided into two sub-intervals which are associated with least
probable symbol (LPS) and most probable symbol (MPS)
respectively. The LPS sub-interval is derived by:

LPS LPSR R p= ⋅ (1)
and the MPS sub-interval is RMPS=R-RLPS, where R is the
original interval size and LPSp is the probability of LPS.
Each bin goes through one interval division process and the

binary representation of the final interval constitutes the coded
bit-stream. CABAC replaces the complex multiplication (1)
with a look-up table rangeTabLPS [1].

We put emphasis on the CABAC decoding process in the
following. One H.264 syntax element is presented as a string
of bins. Different bins may have different context information.
Context information of all the syntax elements is stored in the
context table which is indexed by context index (ctxIdx). For
a certain bin whose index in the bin string is binIdx, its ctxIdx
is determined by the binIdx, the syntax type and neighboring
decoded information. Context table contains two kinds of
information used for arithmetic decoding. The first one is the
probability status (pStatus) which is a uniformed integer to
indicate the probability of the case that the decoding bin is
MPS. The second one is MPS value (valMPS) which is a
binary value to indicate whether the MPS is 1 or 0.

RangeIdx=(Range>>6) & 3
RangeLPS = rangeTabLPS[pStatus][RangeIdx]

RangeMPS = Range-RangeLPS

Offset>=RangeMPS

bin = !valMPS
Offset = Offset-RangeMPS

Range = RangeLPS

pStatus==0

bin = valMPS
pStatus = transMPS[pStatus]

Range = RangeMPS

valMPS
= !valMPS

Yes No

Yes

pStatus = transLPS[pStatus]

No

Range<HALF_R

Range = Range<<1
Offset = Offset<<1

Offset = Offset | read_bits(1)

Yes

No

Renormalization

Determine pStatus & valMPS by ctxIdx

Determine ctxIdx by binIndex, syntax type
and neighboring decoded information

Matching bin string and output decode value

binIdx=binIdx+1 or syntax type switch

LPS decode MPS decode

Step one:
context preparing

Step two:
bin decision

Step three:
output & update

loop1

loop2

loop3

Fig. 1. Bin decoding process

Fig. 1 shows the complete decoding process for one bin.

The decoding process has three steps. In step one, context
information is prepared as the top two boxes in Fig. 1. The
pStatus and valMPS are fetched from context table. In step
two, arithmetic decoding is performed for one bin. Arithmetic
decoder has two internal status variables. The one is Range
which indicates the current interval width as R in (1). Range is
split into RangeLPS and RangeMPS by rangeTabLPS and
pStatus. The other is Offset which is determined by input bits,
and the comparison of Offset and RangeMPS determines the
output bin value. If Offset falls into the LPS sub-interval
(Offset >= RangeMPS), one LPS is decoded, new Range is set
to RangeLPS, and pStatus of current context model is updated

using table transLPS. Otherwise (Offset < RangeMPS), one
MPS is decoded, new Range is set to RangeMPS, and pStatus
of current context model is updated using table transIdxMPS.

Renormalization and output generation is processed in step
three. In renormalization stage, the Range and Offset perform
left-shift operation(s) until Range exceeds half of the total
interval width (HALF_R). New input bits are read as the
lowest bits of Offset during renormalization. The input bit
count is equal to the number of bits that Range and Offset
have shifted. For example, in Fig. 2(a), Offset0 is less than
RangeMPS, a MPS bin is decoded. Offset is unchanged,
assuming that Range1 is larger than HALF_R, and no
renormalization is needed here. In Fig. 2(b), Offset0 is larger
than RangeMPS, so a LPS bin is decoded. And because
RangeLPS is less than the HALF_R, Range and Offset are
renormalized. RangeLPS and the Offset0 are scaled up by 2
times. The proportion of the Offset in RangeLPS interval is
almost kept, except for the lowest bit which is read from input
bit-stream.

RangeMPS

RangeLPS

Offset1

Range1

Range0

bin0=MPS

RangeMPS

RangeLPS

Offset0

Offset1

Range1

Range0

bin0=LPS
one input

bit

Offset0

(a) MPS case (b) LPS case
Fig. 2. Bin decision and renormalization

The decoded bin is concatenated with the previous decoded

bin string. If the newly generated bin string matches one of the
binarization patterns of currently decoding SE, the decoding
process of current SE is finished; otherwise binIdx is
increased by one and more bins are decoded for the current SE.

B. Data Dependency Analysis
As described in Section II.A, three major data dependencies

are extracted as follows:
 Renormalization is dependent on range update.
 Probability transition is dependent on bin decision
 Context switching is dependent on decoded bin
These three data dependency relations lead to three

recursive computation loops, which can hardly be sped up by
pipelining, and thus largely limit the system performance.

Looking more closely, we can find that there are three
directional loops in Fig. 1 and Fig. 3. The loop1 is located in
arithmetic decoder engine. Table rangeTabLPS generates
RangeLPS, subtractor generates RangeMPS, comparator
generates bin decision, and then renormalization generates
new range. The delay of the comparator can be hidden into
renormalization, if we renormalize both RangeLPS and
RangeMPS as divided range and select the two groups of
range/offset pairs with bin decision result. And the delay of
subtractor can also be reduced when using the rangeTabMPS
table to generate RangeMPS directly from pStatus and range.

Renormalization can be implemented by an efficient parallel
leading-one detection circuit and a barrel shifter. But the table
accesses and the renormalization process can not be done
concurrently, and they are both time-consuming calculations.

The loop2 is the probability status update loop. The new
values of pStatus for both LPS and MPS are generated by
looking up transIdxLPS and transIdxMPS simultaneously.
The final pStatus is determined by bin decision result. To
significantly reduce the effect of access latency of context
model RAM, pre-fetching cache [9] and register grouping [12]
are proposed in CABAC designs.

Context
Index[8]

Range[16]

rangeTabLPS

[7:6]

MUX

pStatus[...] & valMPS[...]

Offset[16]

pStauts[5:0]

RangeLPS - RangMPS cmp

bin

M
U

X

M
U

X

Inv

transIdxLPS
transIdxMPS

new pStatus
new valMPS

ctxIdx

Update
cdxIdx

Renormalization

loop1

loop3

loop2

Fig. 3. Data dependency graph of CABAC

The last and most complex loop3 is context updating loop.

There are totally 399 context models, and the contexts of
successive bins vary according to many factors such as current
SE type, neighboring decoded SE value, bin index and
binarization pattern. Although most syntax elements are
binarized by four basic codes, it is still difficult to perform
both SE boundary detection and SE switching in one clock
period.

The three iterative computation loops prohibit the deep
pipeline scheme from achieving high system performance.
Look-ahead computation is a basic method to speed up a
recursive FSM [17] [18]. But the speed-up factor is limited by
rapidly increased complexity. Multiple-bin arithmetic
decoding (MBAD) schemes are adopted in previous works
[10] [12], but the performance is limited to at most 3 bins per
cycle, and can not meet the requirement of HD applications.
In our paper, variable-bin-rate multiple-bin decoding scheme
is proposed which can effectively break the three iterative
loops at bin level.

C. Useful Characteristics of CABAC
In order to efficiently de-couple the dependency, we made

several useful observations on H.264/AVC CABAC:
1) One LPS bin or bypass bin consumes at least one input

bit. The RangeLPS is always less than 0x100 for all context
models. So if one LPS bin is decoded, new range needs at
least one left-shifting operation to return to the working
interval [0x100, 0x1FF]. One bypass decoding consumes one
bit as well. Observation 1) is very important for our scheme.
We can assume that all the internal (except the last) bins
decoded by one input bit are MPSs.

2) One coefficient level (the most frequently occurred
syntax element) consumes at least one input bit. Coefficient
levels include two SEs, abs_level and sign_flag. The
abs_levels are separated by bypass-coded sign_flags. Due to
1), bit consumption occurs at sign_flag. In addition, suffix
bins of concatenated unary/k-th order Exp-Golomb (UEGk)
are bypass-coded, and this limits the maximum number of bins
of one coefficient level to sixteen in one clock cycle.

3) Overwhelming majority of coded bits are assigned to
three kinds of SEs (referred to as MB data SE): intra
prediction modes, motion information and residual
information (up to 95% of total bits on average). This gives us
a hint to implement these SE decoding by separating them
from other macroblock (MB) SEs (referred to as header SEs).

4) As for context models, some syntax elements (referred to
as category-one) use independent context models for
successive bins. Category-one SEs include significance map
and reference index. Separate context models are accessed
when decoding consecutive bins. Newly updated pStatus will
not be used when decoding one input bit. So the probability
update processes can be done together after one bit is decoded.

5) Some other syntax elements (referred to as category-two)
use the same context model for a series of bins, such as
coefficient level, motion vector difference and intra prediction
modes. No context switching is needed for these bins, but the
pStatus of consecutive bins are derived by traversing a series
of status transition tables (transMPS).

6) The requirement of decoding speed can be derived by
several aspects. But the bin-rate constraint is much stricter
than bit-rate constraints. So if we can decode one input bit per
cycle, the required system frequency can be reduced
significantly compared with constant-bin-rate schemes. The
following sub-section analyzes the requirement in details.

D. Real-Time Decoding Requirement
H.264 defines a series of profiles and levels. Profile defines

the coding tool set that a decoder must support, and level
defines the resolution & bit rate. Maximum bit rates are
defined in levels for different video resolutions, compression
ratios, etc. High definition level 4.0 limits the maximum bit
rate to 20Mbps, which is enough for most HD compressed
videos. But arithmetic coding allows assigning fractional bit to
a certain SE bin, so that one input bit can be theoretically
unfolded into unlimited bins after decoding. To make decoder
implementable, H.264 limits the maximum bin number of one
Network Abstraction Layer (NAL) unit to

(32/3) / 32NumBytesInNAL PicSizeInPel× + (2)
where NumBytesInNAL is the size of one coded NAL unit in

bytes, and PicSizeInPel is the total pixel count in one frame.
But there are still two contradictions for designing constant-
bin-rate CABAC decoder using the bin count limit in (2):

1. H.264 does not give the maximum bit count for specific
NAL units explicitly. We can derive the maximum bit count
for one picture by the minimum compression ratio and
maximum frame size defined for the profile and level. For
high definition level 4.0, the required decoding speed is as
high as 268Mbin/s, which is almost impossible for the
implementation of the three iteration loops with 0.18µm
technology.

2. The bit count limit above is over-estimated because the
bit-rate of level 4.0 is limited to 20Mbps. If we sum up (2) of
all NALs in one period, Hypothetical reference decoder (HRD)
model promises that bit rate fluctuation will not lead to
decoder input buffer overflow The sum of first parts of (2) is
bounded by bit-rate. Theoretically, small amount of bits may
be unfolded into a large amount of NALs. Unlimited NAL
number causes that the sum of the second parts of (2) is not
predictable.

Finally we summarize that the required processing speed
for constant-bin-rate decoding is about 13 times (268M/20M)
more than that of constant-bit-rate decoding to guarantee the
hard real-time decoding in the worst cases for H.264 HD level
4.0.

III. OVERVIEW OF THE PROPOSED SCHEME
The main idea of our proposed decoding scheme can be

summarized as variable-bin-rate strategy and multiple-bin
arithmetic decoding.

A. Variable-Bin-Rate Strategy
As we have discussed in section II-D, it is very difficult to

decode HD videos with constant-bin-rate scheme. Thus we
propose our variable-bin-rate scheme. SEs are separated into
two sets: the first one is MB data SEs, such as intra prediction
modes, motion vector and reference index, and residual
information; and the second one is header SEs, including slice
level flags, mb_type, sub_block_type, etc.

For the first set, it makes up the overwhelming majority of
the input coded bits and also contributes to the major part of
computation complexity. And meanwhile context model
switch pattern is relatively simple for these SEs. So we use
constant-bit-rate scheme to speed up the MB data SEs.

For the second set, computational workload is not very high,
and header parsing is a highly irregular process especially in
SE switching and SE boundary detection. So we adopt
traditional constant-bin-rate scheme to reduce system
complexity while also maintaining real-time processing.

In our constant-bit-rate scheme, the proposed decoder
processes one input bit in one clock cycle. All the decoded
bins corresponding to the input bit are output in parallel. The
number of bins output in one cycle varies from 0 to 16,
according to the current range/offset pair and the successive
probability status. If the initial range of current bit is less than
HALF_R, AD engine reads one more input bit to the offset

value and doubles the range value, with no bins outputting in
this cycle. The main advantage of constant-bit-rate scheme is
that the renormalization process is saved, since one and only
one bit is consumed in one cycle.

The bin overflow problem exists in the case that we can not
fully consume one bit in one cycle when the bit contains more
than 16 bins. According to the observations in section II-C,
the maximum bin number for coefficient level information is
16, so the overflow problem will not occur in coefficient level
decoding. For intra prediction modes, motion vectors and
reference indexes, there are no bypass coded bins for bit
boundary within successive SEs, and hence bin overflow
problem may exist. Our decoder generates a termination signal
when one SE is fully decoded (binarization pattern is
matched). Because each of the mentioned three SEs contains
no more than 16 bins, termination signals of the trailing bins
are certainly to be active. The bin overflow problem can be
solved because we don’t read new input bit when one of the
termination signals of valid decoded bins is active in the clock
cycle. These cycles are referred to as switching cycles.
Another kind of switching cycle occurs when decoding
significant maps, because there are totally 32 bins for one
block at most. As we will show below, the effect of switching
cycles to system performance is acceptable.

For the header SEs, we adopt the traditional one-bin-per-
cycle method, but the working frequency is the same as
constant-bit-rate scheme which is relatively easy to achieve.
Constant-bin-rate scheme can not certainly guarantee
consuming one bit per cycle in all cases. The maximum cycles
cost in one SE is the maximum bin number, and these cycles
are referred to as redundant cycles. Redundant cycles don’t
affect system performance much either.

B. Multiple-Bin Arithmetic Decoding
The basic principle of arithmetic coding enables non-

integer bits to be assigned to SE bins, so one bit may be
potentially unfolded into multiple bins. The three computation
loops described in section II-B limit the possibility of
accelerating multiple-bin decoding with parallel and pipelined
schemes. However, by making use of the combination of the
observations in section II-C and constant-bit-rate scheme, the
three computation loops can be totally broken into bin level,
and hence most operations in the three loops are parallelized.

As described, one LPS bin or bypass bin consumes at least
one input bit, so the bin value tree of all possible 16 output
bins within one bit is depicted as below (Fig. 4).

b0

MPS

LPS

MPS

LPS

...

LPS

MPS

LPS

b1 b15

byp0 term0

byp1 term1
... ...

byp15 term15

Fig. 4. Output transition tree of one input bit

In the tree of Fig. 4, each dotted node represents one
arithmetic decoding unit of one bin, and each distinct path
from the root to one of internal nodes or the leaves stands for
a string of output bins generated by current bit. There are four
cases that may terminate the traversing in the tree:

1) Offset value is larger than RangeMPS. An LPS occurs in
this case, current bit is consumed. The output bin string is a
single LPS or a series of MPSs followed by one LPS.

2) Range value is less than HALF_R. Range reduction
causes the bit consumption. The output bin string is a series of
MPS.

3) Current bin is bypass coded (indicated by bypi). Current
bit is consumed. The output bin string is a series of MPS
followed by one bypass value (whether offset is larger than
the half of range).

4) Current bin is a termination bin (flagged by termi). No
new bit is read, and no shifting is done when updating range
and offset value. The output bin string is a series of MPSs.

Offset0

Range0

bin0=valMPS0

input one bit

Offset1

Range1

valMPS1

Offset2

Range2

valMPS2

HALF_R

Offset3

valMPS3

Offset4

valMPS4

Offset5

valLPS5

Offset6

input two bits

Offset0

count=3
bin0-2=valMPS0-2

HALF_R

Range3

Range4 Range5

Range6

Range3

Range0

RangMPS0

RangMPS1

RangMPS2

RangMPS3

RangMPS4

RangMPS5

count=3
Bin3-5=valMPS3-4valLPS5

input
one bit

Offset3

Offset6

input
one bit

Range6

Offset6

Range6

input
one bit

MPS+MPS+…+MPS MPS+…+MPS+LPS bin-by-bin scheme

bit-by-bit scheme

Fig. 5. Comparison between bin-by-bin and bit-by-bit scheme

Fig. 5 demonstrates case 2) and case 1) described above. In

bin-by-bin scheme, the first three MPS bins are decoded
serially and case 2) occurs. RangeMPS2 is less than HALF_R,
and renormalization is performed and one input bit is
consumed. As we can see in Fig. 5, when a series of MPS
occur, Offset will be unchanged and Range is updated by each
RangeMPS serially. In our multiple-bin scheme, a series of
RangeMPS (up to 16) are calculated in one cycle, and
compared with HALF_R and Offset in parallel. In case 2), the
largest one of RangeMPSs which are less than HALF_R is
selected as new Range to perform renormalization. The
selection also determines the valid decoded bin count. The
successive three bins are two MPSs and one LPS, and case 1)
occurs. In case 1), the LPS interval [RangeMPSi+1,

RangeMPSi] in which the Offset falls is selected as new
Range to perform renormalization. Our multiple-bin scheme
consumes only one bit per cycle. Two cycles are used to
renormalize the Range to be larger than HALF_R as Fig. 5.
Case 3) and case 4) are similar with case 2).

In our scheme, when one certain bin is to be decoded, all
previous decoded bins corresponding to the bit are assumed to
be MPSs, thus the context switching and probability update
can be directly processed without full decoding. As to the first
computation loop (in section II-B), renormalization process is
omitted, and RangeMPS is set directly to range value used by
the following bin. As to the second loop, probability status
can be derived by iteratively traversing the transIdxMPS table,
and the table can be replaced by a saturated incrementer unit.
As to the third loop, multiple context indexes for different
bins can be derived totally independent of the AD process.
The three computation loops are broken by the MPS
assumption.

Compared with the constant-rate 16-bin decoding, constant
bit-rate decoding can have a significant low complexity. The
output transition tree of full constant-rate 16-bin is a complete
binary tree which contains as many as 65535 AD units. In
these AD units, renormalization can not be saved. Our
constant-bit-rate scheme decodes one bit at one clock, the
three computation loops is moved to bit level (not bin level).
Bit level loop is much looser than bin level loops in
computation complexity, because firstly frequency
requirement of these bit loops is significantly lower, and
secondly computation latency of each AD unit is also largely
reduced.

C. System Level Architecture

intra mode
module

motion info
module

significance
map module

coefficient
level module

context models
RAM

(399x7bits)

context RAM bus

local update bus

 MBAD

local probability bus

pSi valMPSi bypi termi

header decoding engine

range/offset updatesyntax switch

input bit

ti bini mpsi

local context reg
(30x7bits)

local context
reg (10x7bits)

local context reg
(13x7bits)

local context reg
(4x7bits)

AD
unit

AD
unit

AD
unit

rangei

offseti

...

...bit
buffer

load

load
Fig. 6. System level architecture

Fig. 6 shows our system architecture to support variable-

bin-rate CABAC decoding. For the context model

management, we adopt the two-level memory architecture as
[12]. Total 399 context models are stored in on-chip SRAM,
with the size of 399x7 bits (six bit for probability status and
one for MPS value). Local context register groups (LCRG)
are used to speed up the accessing of the context model. All
context information which has the possibility to be used in
current block is preloaded into local context registers from
context model RAM. After decoding one bit, some context
registers may be updated by probability propagation (PP)
modules, but these new changes will not be written back to
context model RAM until different context models are needed
to be loaded into local context registers for next block.
 Four dedicated PP modules for probability propagation of
intra modes, motion information, significant map, and
coefficient levels are shown in Fig. 6. These four modules
generate up to 16 probability status (pSi) and MPS values
(valMPSi) of successive bins. Two major tasks in these
modules are SE switching and probability update. Dedicated
logic optimization is done for accelerating SE switching
process when MPSs occur. And new probability of the same
context model is generated by looking up the transIdxMPS
table (replaced by saturated incrementer unit). The PP
modules also generate bypass flag (bypi) and terminal signal
flag (termi) for MBAD engine.

Four PP modules share one MBAD by local probability bus.
MBAD performs 16 bin decoding process serially. The update
for offset and range is done in MBAD bin by bin. And output
updating information is also generated progressively. They are
valid flag (ti) to indicate whether the result of current bin is
valid (the valid bins constitute the bin string decoded by
current bit), output bin value (bini), and a flag bit (mpsi) to
indicate whether current bin is MPS. The updating
information is sent to local update bus, and PP modules use
them to update initial SE and initial context information for
next bit decoding.

All header information decoding is processed in header
decoding engine (HDE) with context model RAM. Traditional
constant-bin-rate decoding scheme is adopted in HDE as [11]
[12] and Fig. 3. The values of range and offset in HDE and
MBAD are swapped when SE switching between the two
engines.

D. System Performance Analysis
Previous CABAC decoders have not given a quantitative

performance analysis for real-time decoding, and most of
them conclude their real-time guarantee by simulation result.
As performance requirements vary a lot for different video
scenes, we give a quantitative analysis in the worst cases for
our variable-bin-rate scheme.

H.264 level 4.0 limits the bit-rate to 20Mbps. If our MBAD
engine can fully decode one bit per cycle, the required
working frequency is only 20MHz. But as described in section
III-A, we can not decode one bit in every cycle due to
redundant cycles and switching cycles. In the worst case, we
assume that all the syntax elements that are possible to induce
redundant cycles or switching cycles do not consume any bit

at all. The total additional frequency required can be
calculated by summing up the total redundant cycles and
switching cycles needed per MB and multiplying the sum with
MB rate. Header information such as mb_type and
sub_partition, is decoded one bin per cycle, so the redundant
cycles are counted as the maximum bin count of the
corresponding SE. Intra modes, motion information and
significant map are bounded by termination signals block by
block. Hence at most 16 switching cycles are consumed by
one type of SEs in one MB. In a word, due to the redundant
cycles and switching cycles, the required system frequency
increases from 20MHz to 42MHz. But as we will see below,
the frequency requirement of the three bit-level computation
loops is easy to meet.

TABLE I

SYSTEM FREQUENCY REQUIREMENT

Syntax Element Redundant
cycles / MB

Switching
cycles / MB

Frequency required
(MHz)

mb_type 7 - 7x0.24=1.7
sub_patition 6x4 - 24x0.24=6 (inter)
mb_qp_data 2 - 2x0.24=0.5
coded_block_pattern 18 - 18x0.24=4.5
other headers 4 - 4x0.24=1
Switch in intra mode - 16 16x0.24=4 (intra)
Switch in ref_idx - 16 16x0.24=4 (inter)
Switch in mvd - 16 16x0.24=4 (inter)
Switch in sig map - 2 2x0.24=0.5
constant bit decoding - - 20 (level 4.0)

Total 42(inter), 32(intra)
The maximum MB rate is 0.24M/s as defined in H.264 level 4.0

IV. DETAILED ARCHITECTURE DESCRIPTION
In this section, we discuss our proposed architecture in

detail. We have grouped the data SEs into two categories in
section II-C. Significance map and coefficient level are the
most typical representatives of the two categories respectively.
And in addition, these two SEs constitute the most part of
input bit rate. We put emphasis on these two PP modules.
Other PP modules such as motion information and intra
prediction mode, are similar to them. Detailed architecture of
MBAD is also introduced here.

A. Probability Propagation of Significance Map
Significance map consists of two types of SEs, significance

flag (SF) and last significance flag (LF). SF indicates whether
the coefficient is non-zero, and LF means whether there is no
more non-zero coefficient in current block. Each SF or LF is
binarized as one bin. The context indexes of SF and LF bins
are determined by the coefficient position in the block (0~14).

TABLE II
VARIABLE TRANSITION RELATIONS IN SIGNIFICANCE MAP

Current si Decoded bin bi Next si+1 Next pi+1

0 0 1 pi+1
0 1 1 pi+1
1 0 1 pi+1
1 1 0 pi

As category-one SE, successive bins of significance map
use different context models. Thus the context switching is the
main task for significance map PP. We define two iteration
variables: si (indicates whether current bin is SF, 1 for SF and
0 for LF), and pi (indicates the coefficient position of current
bin). The transition relation can be summarized in Table II.

If current SE is SF and the current decoded bin value is 1
(significant), next SE is LF; otherwise next SE is SF, and
coefficient position increases by one. If current SE is LF, next
SE is SF and coefficient position increases by one. Table II
can be reduced to the following formulas according to the
truth table (TABLE II):

1

1 1

~ ()i i i

i i i

s s b
p p s

+

+ +

= ⋅
= +

 (3)

Only one NAND and one 4-1 bit adder operations are needed
for one stage of iterator variable propagation.

Concatenating the 16 stages, we get the architecture of
significance map PP module (Fig. 7). MPS values (mi) and
pStatus (pSi) are selected from local context registers with si
and pi. In our constant-bit-rate scheme, MPS value is used as
decoded bins in each bin stage. New SE flag and new position
is updated by (3).

s0

p0

s1

p1

valMPS0~29 valMPS0~29

m0 m1

p2

valMPS0~29

m2

...

...
s2

p15

valMPS0~29

m15

s15

pStatus0~29 pStatus0~29

pS0

pStatus0~29 pStatus0~29

pS1 pS2 pS15

one bin stage

Fig. 7. Architecture of PP for significance map

B. Probability Propagation of Coefficient Level
As described in section II-C, coefficient level consists of

two SEs: UEG0-binarized abs_level and bypass-coded sign
(Fig. 8). UEG0 binarization consists of a TU-coded prefix
with maximum length 14 and an EG0-coded suffix [2].

0 1 2 13

prefix suffix

... 14 15 ...

TU coded EG0 coded

ctx1 bypass

bin
index

ctx0

Fig. 8. Binarization of absolute value of coefficient level

The context indexes of abs_levels are adaptively updated

with previously decoded levels. Two context models are used

in one coefficient level, one for the first bin (pSb0) and one for
2nd~14th bins (pSb1); suffix bins are bypass-coded. The pSb0 is
determined by numDecAbsLevelGt1 and
numDecAbsLevelEq1, and pSb1 is determined by
numDecAbsLevelGt1 only.

b0=0

pSb0
pSb1

b0=0

pSb1

M
M M...

pS0 pS1byp0

b0>14

pS2 pS14byp1

b0>13

byp2

b0>12

byp14

b0>0

byp15

1

Fig. 9. Architecture of PP for coefficient levels

We use bi to indicate the index of the bin decoded in the ith

bin stage. Due to termination signal of significance map and
bypass-coded sign_flag, the first bin of one abs_level must be
located in the first bin stage. According to the initial index b0,
pSi is generated by traversing the transIdxMPS tables (M
tables in Fig. 9). And bypass flag bypi is also generated by the
corresponding index. After decoding one coefficient, pS0 and
pS1 are updated by context models in the local context
registers.

C. Multiple-bin Arithmetic Decoding
MBAD engine can produce up to 16 bins until one bit is

consumed or a termination signal is asserted. The probability
statuses of the 16 bins (pSi) are generated by PP modules. R0
and Offset0 are the initial range and offset, which are updated
in the previous cycle. Just as PP modules, MBAD engine also
consists of 16 bin stages, each of which processes one bin
arithmetic decoding. The inputs of one bin stage are current
value of range and offset (Ri and Offseti), the probability
status of pSi, bypass flag (bypi) and termination signal (termi)
with i indicating the index of current bin stage. The outputs of
one arithmetic decoding stage are valid signal (ti), MPS/LPS
selection signal (mpsi), and decoded bin value (bini).

If ti is equal to zero, the decoded results of current bin stage
and all the following bin stages are not valid. That is to say,
these output bins will not be appended to the output bin string
and these update information will not be used by either
R0/Offset0 update or probability update. The ti flags are
inactive when

(1) LPS occurs. In this case, the sign (highest) bit of the
result of subtracting RangeMPS from Offseti is zero.

(2) Range needs renormalization. In this case, the highest
bit of RangeMPS is zero.

(3) The bypass flag or termination signal is active.
(4) The valid flag of previous bin stage (ti-1) is inactive.
The RangeLPS value of each bin stage is generated by table

looking up with Ri and pSi. And RangeMPS is generated by
subtracting RangeLPS from Ri. Because all hypothesized
decoded bins are MPSs, range value for next bin stage is just
associated with RangeMPS value of current bin stage.
Meanwhile, Offset value for next bin stage is equal to the

result of subtracting RangeMPS from Offseti. According to
the arithmetic decoding process described in Fig. 1, if Offseti
is less than or equal to RangeMPS, the actual decoded bin is
LPS; otherwise, the decoded bin is MPS. So we reuse the sign
bit of the result of subtracting RangeMPS from Offseti as mpsi.

TR0

pS0

LPS0

T
R1

pS1

LPS1

R2

LPS2

T

pS15

LPS15

Offset0 ...
[9]

t1

[9] m0

bin0mps0

[9]

t2 bin1mps1
...

[9]

[8]

t16

m15

bin15mps15t0

[8]

R15

Offset1 Offset2 Offset15

>>1

byp0

>>1

byp1

>>1

byp15

[8]

term0

[8]

term1

one bin stage

[9] m1
[9]

...

Fig. 10. Multiple-bin arithmetic decoding architecture

Output bin is generated by the MPS/LPS decision signal

mpsi and MPS value (mi). Because bini is equal to mi when
mpsi is high, or bini is set to be ~mi when mpsi is low, we can
efficiently implement the logic with an XNOR operation.

Decoding functions of bypass-coded bin and termination
bins are also seamlessly integrated into our MBAD
architecture. When bypass-coded bin occurs, the threshold
value of Offseti for making MPS/LPS judgment changes from
RangeMPS to Ri>>1. As we can see in Fig. 10, propagation of
range value is broken by the bypass cases. When bypass bin
occurs, the following bin stages are bound to be invalid (ti is
equal to 0), so the bypass MUX is omitted in range
propagation path, and this shortens the range propagation
delay. Termination signal directly affects ti flags to invalidate
the following bin decoding outputs.

Our proposed MBAD architecture is effectively designed to
shorten the system critical path and to reduce area and power
costs. In traditional CABAC engines, context derivation, AD
decoding, renormalization and probability updating are
processed in serial. If we directly map these data dependencies
for multiple-bin decoding, it will result in a concatenated one-
dimensional path with long computation delay. If we combine
Fig. 7 or Fig. 9 with Fig. 10, we can find that in our proposed
architecture, pStatus/context and range/offset propagation in
horizontal direction and bin decoding in vertical direction can
process in parallel. Our MBAD scheme efficiently maps the
iterative one-dimensional arithmetic decoding algorithm into
parallel two-dimensional architecture, and thus gains
extremely high performance with relatively low area and
power costs.

In addition, MBAD architecture is separated into several
bin stages, and interconnections between stages are simple. So
within the decoder core, most circuits are connected with local
interconnections and the fan-out is relatively small too. This

feature can largely save redundant routing area and reduce the
wire delay as well.

Renormalization is replaced by shifting one bit per cycle, so
that the leading-one detection circuits and large shifter can be
saved. Furthermore, the bit loading process can
simultaneously conduct up to 16 bins, and the delay is
relatively small compared with the core AD iterations.

V. IMPLEMENTATION RESULT
We have implemented the proposed architecture for TSMC

0.18µm process. The system critical path is the concatenated
range update process during multiple MPS bin decoding. The
maximum delay of critical path is about 22ns with total logic
area of 42K gates (without context RAM). As we have
analyzed in section III-D, system frequency requirement for
real-time decoding is 42MHz. So we can decode the H.264
high definition level 4.0 in real time (see details in Table III).

TABLE III
COMPARISON OF CABAC DECODERS

Architectures Process
(µm)

Area
(KGate)

Frequency
(MHz)

Decoding
Power

Chen’s [11] 0.13 138* 200 CIF 25Hz
Yu’s [12] 0.18 30 148.5 D1 30Hz
Kim’s [19] 0.18 na 300 na
Eeckhaut’s[20] na 590ALMs 105 HDTV
Proposed 0.18 42 45 1080i 30Hz

* The area includes the context model SRAM.

To compare with our multi-bin scheme, we can directly

expand the critical loops of [12] to decode multiple bins in
one cycle. To guarantee decoding one bit per cycle for
significance map and coefficient levels, the expansion factor
should be 16 and the working frequency is as low as 9MHz
which can not meet the real time requirement for HD
applications.

Chen’s design is based on 0.13µm technology.
Experientially, to implement the circuits with the same gate
count, 0.13µm implementation is about half in area compared
with 0.18µm implementation; but the speed is almost the same
because of the secondary effects of deep sub-micron circuits.
Kim’s architecture decodes one bin every three cycles, so the
bin throughput is only 100M/s. Eeckhault implements the
decoder on Altera’s FPGA Stratix II S60, and the logic part
occupies 590 Adaptive Logic Modules (ALM). He claims the
decoder can support HD applications. But as shown in the
analysis above, it can not guarantee the performance in the
worst cases. Reconfigurable solution is flexible compared
with ASIC, but the high cost and high power consumption
features make it hard to become the mainstream in industry for
video decoding applications. As for the average performance,
our multiple-bin scheme can achieve as high as 102Mbin/s
according to the simulation result on typical video streams.
The average bin-rate is comparable with previous works, but
we can guarantee the worst case performance because bit
fluctuation is generally smaller than bin fluctuation in the real
world.

Compared with previous works, our multiple-bin parallel

decoding scheme does not induce large area cost. This is
because that we have efficiently simplified the logic of every
bin stage by taking the best advantages of constant-bit-rate
strategy. MPS assumption reduces the bin selection
computation from the exponential scale into the linear scale.
And the circuits for generating new range are also simplified.

In addition, due to the low working frequency of our design,
the power consumption is largely reduced compared with
previous works. According to the equation 2P kCV f= , we
can estimate that the power consumption of our design is
about 1/2.4 of Yu’s and even less compared to other works.
The power reduction is gained by our efficient variable-bin-
rate scheme. Computation-intensive parts are paralleled using
multiple-bin decoding scheme to reduce the working
frequency. And low-loaded syntax elements are decoded using
bin-by-bin scheme to avoid large increase in total area.

Our high performance CABAC decoding engine can be
easily integrated into a video decoder chip. CABAC decoding
is the first stage of video decoding. The following components,
such as IDCT and motion compensation, generally adopt
macroblock pipeline to achieve high performance. But the
processing cycles used by CABAC decoding vary a lot for
different macroblocks. We can place a frame-level buffer
between CABAC and the following components to match the
speed variation between CABAC and following components.

VI. CONCLUSION
This paper proposes a CABAC decoding engine for H.264

high definition real time decoding. Compared with the
previous works, we give a thorough analysis on system
performance requirement for real time decoding for the first
time. This ensures our decoder engine can process real time
decoding in the worst cases.

In our engine, we adopt the variable-bin-rate strategy.
Constant-bit-rate scheme is used in MB data decoding to
reduce the system frequency requirement. And constant-bin-
rate scheme is used in header decoding to significantly reduce
the system complexity for MBAD. The two schemes are
combined to make our variable-bin-rate strategy very efficient.

Multiple-bin arithmetic decoding scheme benefits a lot from
constant-bit-rate strategy. The MPS assumption is derived by
constant-bit-rate strategy. And the assumption reduces the
complexity of bin selection traversing computation from an
exponential scale into a linear one. Thus the proposed MBAD
scheme can efficiently map the iterative one-dimensional
arithmetic decoding algorithm into parallel two-dimensional
architecture, and gain extremely high performance with
relatively low area and power costs.

Probability propagation modules are designed to facilitate
the decoding of the four specific types of SEs. This minimizes
the design complexity for each single PP module. Special
characteristics of these SEs are efficiently utilized to optimize
both context switching process and probability update process.

The implementation result shows that our decoder engine

can run up to 45MHz. This can guarantee that our decoder can
process 1080i video of H.264 level 4.0 at 30 frames per
second, even in the worst cases. Comparison result shows that
the area increase of the proposed scheme is relatively small,
whereas decoding power consumption is significantly reduced.

ACKNOWLEDGMENT
The authors would like to thank Di Wu, Junhao Zheng,

Bing Sheng, Lei Deng, Huizhu Jia and etc. for useful
discussions and valuable comments.

REFERENCES
[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft

ITU-T recommendation and final draft international standard of joint
video specification ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC,”
JVT_G050, 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjntegaard, A. Luthra, “Overview of the
H.264/AVC Video Coding Standard,” IEEE Trans. Circuits Syst. Video
Technol., vol 13, no 7, pp. 560-576, Jul. 2003.

[3] J. Osterman, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.
Stockhammer, T. Wedi, “Video Coding with H.264/AVC: Tools,
Performance and Complexity,” IEEE Circuits and Systems Magazine,
vol. 4, no. 1, pp. 7-28, Mar. 2004.

[4] D. Marpe, H. Schwarz, T. Wiegand, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC video compression standard”,
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no 7, pp. 620-636,
Jul. 2003.

[5] K. Andra, C. Chakrabarti, T. Acharya, “A High-Performance JPEG2000
Architecture”, IEEE Trans. Circuits Syst. Video Technol., vol. 13, no 3,
pp. 209-218, Jul. 2003.

[6] G. Pastuszak, “A Novel Architecture of Arithmetic Coder in JPEG2000
Based on Parallel Symbol Encoding”, IEEE Proc. Parallel Computing in
Electronical Engineering, pp. 303-308, Sept. 2004.

[7] J. L. Nunez, V. A. Chouliaras, “Design and Implementation of a High-
Performance and Silicon Efficient Arithmetic Coding Accelerator for the
H.264 Advanced Video Codec”, IEEE Proc. Application-Specific
Systems, Architecture Processors, pp. 411-416, Jul. 2005.

[8] J. L. Nunez, V. A. Chouliaras, “High-Performance Arithmetic Coding
VLSI Macro for the H264Video Compression Standard”, IEEE Trans.
Consumer Electronic, vol. 51, no. 1, pp. 144-151, Feb. 2005.

[9] R. R. Osorio, J. D. Bruguera, “Arithmetic Coding Architecture for
H.264/AVC CABAC Compression System”, IEEE Proc. Euromicro
Symposium on Digital System Design, pp. 62-69, Sept. 2004.

[10] R. R. Osorio, J. D. Bruguera, “A New Architecture for fast Arithmetic
Coding in H.264 Advanced Video Coder”, IEEE Proc. Euromicro
Conference on Digital System Design, pp. 298-305, Sept. 2005.

[11] Jian-Wen Chen, Cheng-Ru Chang, Youn-Long Lin, “A Hardware
Accelerator for Context-Based Adaptive Binary Arithmetic Decoding in
H.264-AVC”, IEEE Proc. International Symposium on Circuits and
Systems, vol. 5, pp. 4525-4528, May 2005.

[12] Wei Yu, Yun He, “A high performance cabac decoding architecture”,
IEEE Trans. Consum. Electron., vol. 51, no. 4, pp. 1352-1359, Nov.
2005.

[13] L. Bottou, P. G. Howard, Y. Bengio, “The Z-coder adaptive binary
coder”, IEEE Proc. Data Compression Conference, pp. 13-22, Apr.
1998.

[14] X. Marichal, B. Macq, M. P. Queluz, “Generic coder for binary sources:
the M-coder”, IEE Electron. Lett., vol. 31, no. 7, pp. 544-545, Mar. 1995.

[15] J. L. Mitchell, W. B. Pennebaker, “Optimal Hardware and Software
Arithmetic Coding Procedures for the Q-Coder”, IBM J. RES. Develop,
vol. 32, no. 6, pp. 727-736, Nov. 1988.

[16] M. J. Slattery, J. L. Mitchell, “Qx-coder”, IBM J. RES. Develop, vol. 42,
no. 6, Nov. 1988.

[17] S. F. Chang, D. G. Messerschmitt, “Designing High-Throughput VLC
Decoder. I. Concurrent VLSI Architectures”, IEEE Trans. Circuits Syst.
Video Technol., vol. 2, no 2, pp. 187-196, Jun. 1992.

[18] H. D. Lin, D. G. Messerschmitt, “Designing a High-Throughput VLC
Decoder. I. Parallel Decoding Methods”, IEEE Trans. Circuits Syst.
Video Technol., vol. 2, no 2, pp. 197-206, Jun. 1992.

[19] C. H. Kim, I. C. Park, “High Speed Decoding of Context-Bbased
Adaptive Binary Arithmetic Codes Using Most Probable Symbol
Prediction”, IEEE International Symposium on Circuits and Systems,
May 2006.

[20] H. Eeckhaut, M. Christiaens, D. Stroobandt, V. Nollet, “Optimizing of
the Critical Loop in the H.264/AVC CABAC Decoder”, IEEE
International Conference on Field Programming Technology, pp. 113-
118, Dec 2006.

Peng Zhang received the B.S. degree in electronic
engineering and information science from University of
Science and Technology of China, in 2002, and the M.S.
degree in computer science from Institute of Computing
Technology, Chinese Academy of Sciences, in 2004. At
present, he is a Ph.D. candidate in Institute of Computing
Technology, Chinese Academy of Sciences. His research

interests include video coding, computer architecture, effective VLSI
implementation and SoC design.

 Don Xie received his Ph.D. degree in electrical
engineering from University of Rochester, USA. He was
a Senior Scientist at Eastman Kodak Company, New
York, USA, from 1994 to 1997; a Principal Scientist at
Broadcom Corporation, California, USA, from 1997 to
2002. He right now holds a position at Spreadtrum
Communications, Inc. as a Senior Director. His research

interests include: multimedia SoC design, embedded system. He holds 24 U.S.
Patents.

Wen Gao (M’99) received the M.S. degree and the Ph.D.
degree in computer science from Harbin Institute of
Technology, Harbin, China, in 1985 and 1988,
respectively, and the Ph.D. degree in electronics
engineering from the University of Tokyo, Tokyo, Japan,
in 1991. He was a Research Fellow with the Institute of
Medical Electronics Engineering, University of Tokyo, in
1992, and a Visiting Professor with the Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, in 1993. From 1994 to 1995, he
was a Visiting Professor with the Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge. Currently, he is the
Director of the Joint R&D Lab (JDL) for Advanced Computing and
Communication, Chinese Academy of Sciences, a Professor with the Institute
of Computing Technology, a Professor of computer science with the Harbin
Institute of Technology, and an honor Professor of computer science at City
University of Hong Kong. He has published seven books and over 200
scientific papers. His research interests are in the areas of signal processing,
image and video communication, computer vision, and artificial intelligence.
Dr. Gao chairs the Audio Video coding Standard (AVS) workgroup of China.
He is the head of the Chinese National Delegation to MPEG working group
(ISO/SC29/WG11). He is also the Editor-in-Chief of the Chinese Journal of
Computers and the general Co-Chair of the IEEE International Conference on
Multi-model Interface in 2002.

