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ABSTRACT 

 

 

POWER EFFICIENT CONTINUOUS-TIME DELTA-SIGMA MODULATOR 

ARCHITECTURES FOR WIDEBAND ANALOG-TO-DIGITAL CONVERSION 

 

 

MAY 2012 

 

 

MOHAMMAD RANJBAR, B.Sc., AMIRKABIR UNIVERSITY OF TECHNOLOGY 

 

M.Sc., IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Omid Oliaei 

 

 

This work presents novel continuous-time delta-sigma modulator architectures 

with low-power consumption and improved signal transfer functions which are suitable 

for wideband A/D conversion in wireless applications, e.g., 3G and 4G receivers. The 

research has explored two routes for improving the overall performance of continuous-

time delta-sigma modulator. The first part of this work proposes the use of the power 

efficient Successive-Approximations (SAR) architecture, instead of the conventional 

Flash ADC, as the internal quantizer of the ∆Σ modulator. The SAR intrinsic latency 

has been addressed by means of a faster clock for the quantizer as well as full-period  

delay compensation. The use of SAR quantizer allows for increasing the resolution 

while reducing the total power consumption and complexity. A higher resolution 

quantizer, made feasible by the SAR, would allow implementing more aggressive noise 

shaping to facilitate wideband ∆Σ A/D conversion at lower over-sampling-rates. As 
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proof of concept, a first-order CT-∆Σ modulator with a 5-bit SAR quantizer is designed 

and implemented in a 130 nm CMOS process which achieves 62 dB dynamic range over 

1.92 MHz signal bandwidth meeting the requirements of the WCDMA standard. The 

prototype modulator draws 3.1 mW from a single 1.2 V supply and occupies 0.36 mm
2
 

of die area. 

The second part of this research addresses the issue of out-of-band peaking in 

the signal-transfer-function (STF) of the widely used feedforward structure. The STF 

peaking is harmful to the performance of the modulator as it allows an interferer to 

saturate the quantizer and result in severe harmonic distortion and instability. As a 

remedy to this problem a general low-pass and peaking-free STF design methodology 

has been proposed which allows for implementing an all-pole filter in the input signal 

path for any given NTF. Based on the proposed method, the STF peaking of any 

feedforward modulator can be eliminated using extra feed-in paths to all the integrator 

inputs. 

 A major drawback of the conventional feedforward topology having low-pass 

STF is the large sensitivity of the STF to the coefficients. In particular, component 

mismatch, due to random errors in the relative values of individual resistors or 

capacitors, can significantly degrade the anti-aliasing of the CT modulator and give rise 

to the unwanted STF peaking. To solve this problem two new architectures, namely 

dual-feedback and dual-feed-in are proposed which allow us to synthesize a low-pass 

STF with a smaller number of coefficients than the feedforward structure. The dual-

feedback structure which shows significantly lower sensitivity to coefficient mismatch 

is extensively analyzed and simulated. Also for proof of concept a third-order modulator 



 viii 

is implemented in a 130 nm CMOS process which achieves 76 dB dynamic-range over 

5 MHz signal bandwidth meeting, for example, the requirements of a DVB-H receiver 

standard. In addition the modulator shows 77 dB anti-aliasing and less than 0.1 dB 

worst-case STF peaking.  The measured power consumption of the modulator is 6 mW 

from a single 1.2 V and the die area is 0.56 mm
2
. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Delta-Sigma (∆Σ) Modulators have received increasing popularity in recent 

years [1]. Traditionally, they are well-suited for high-resolution and low-speed 

applications like instrumentation where the conversion speed is traded off with the 

resolution.  A common practice in the implementation of ∆Σ modulators is the use of a 

single-bit feedback digital-to- analog converter (DAC) which is inherently linear and 

allows for building precision ∆Σ analog-to-digital converters (∆Σ-ADC) with low cost. 

However,  single-bit internal quantizers pose stability issues in third or higher-order ∆Σ 

modulators. To overcome this problem, a multi-bit internal quantizer can be used which 

has a well-defined gain and allows for implementing a stable ∆Σ loop filter. In recent 

years, with a shift toward higher speed applications, ∆Σ designs are predominantly 

multi-bit [2]. Also technology scaling has increased the maximum unity gain bandwidth 

of analog signal processing blocks, enabling the design of wide-band ∆Σ modulators 

with higher conversion rates which are needed for high speed communication 

applications.  

The current trend toward System-On-Chip (SOC) design with ever increasing 

levels of integration necessitates reducing the power budget of the individual building 

blocks to reduce the overall power consumption . Low power consumption is 

particularly an important feature in portable applications which is needed for a long 

battery life. As a result of this trend, power-efficient data converter architectures such as 
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continuous-time delta-sigma (CT-∆Σ) modulators have been attracting more attention in 

recent years. 

From a design perspective, discrete-time (DT) ∆Σ modulators are often 

implemented using switched-capacitors (SC) technique. However in a SC-design the 

gain-bandwidth product (GBW) of the amplifiers need to be significantly higher than 

the sampling frequency for a linear settling. This requirement limits the highest 

conversion speed which can be achievable by a DT-modulator for a given power budget.   

Continuous-time (CT) design relaxes the amplifier speed requirements and has better 

potential for high speed and low-power applications. In addition, CT ∆Σ modulators 

offer inherent Anti-Aliasing (AA) which can be leveraged to simplify or eliminate the 

explicit filter preceding the ADC. Relaxing the ADC pre-filter requirements can provide 

power and cost reduction opportunities in other parts of the system as well. 

 

1.2 Objectives 

This research has explored two possible avenues towards designing power-

efficient multi-bit CT-∆Σ modulators. . First, we have considered the power reduction 

opportunities in multi-bit CT-∆Σ modulators by enabling the use of power-efficient 

quantizer architectures. This objective is motivated by the observation that the multibit 

quantizer comprises a significant percentage of total power consumption in CT-∆Σ 

modulators, particularly in comparison with DT structures.   It is also noted that the 

traditionally-used flash architecture is not the most power-efficient quantizer. The 

common use of flash quantizer in CT-∆Σ modulators is explained by desire to avoid the 

excess-loop-delay issue owing to its fast speed. In this work, we have proposed using 
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the successive-approximation (SAR) quantizer, as the most power efficient architecture 

[3], as multibit quantizer within a CT-∆Σ modulator along with delay compensation to 

preserve the modulator stability. A potential issue associated with using a multibit 

quantizer in CT-∆Σ modulators, is the excess-loop-delay contribution of the dynamic-

element-matching (DEM) block used for the linearity enhancement of the feedback 

DAC. We have addressed this issue by taking advantage of the SAR quantizer’s serial 

operation and introducing the partial-data-weighted-averaging (Partial-DWA) as an 

alternative DEM solution. 

As a second path, we have considered the opportunities associated with 

improving the signal-transfer-function (STF) of a CT-∆Σ modulator. Figure 1.1(a) 

shows a direct-conversion receiver architecture which is commonly used in low-cost 

receiver applications [4]. The analog base-band includes a variable-gain-amplifier 

(VGA) followed by a low-pass filter for anti-aliasing (AA) and blocker attenuation. The 

VGA is intended for amplifying the week base-band signal and eventually making it 

detectable by the ADC. In principle, the VGA can be eliminated by increasing the ADC 

dynamic range to detect the week desired signal without any amplification. On the other 

hand, a low-pass STF in the CT–∆Σ modulator would make it possible to relax  the  

analog base-band filtering requirements and thereby, provide power and area saving. In 

this work, we have proposed two novel modulator architectures which ensure a low-pass 

STF with no out-of-band peaking. As shown in Figure 1.1(b) the elimination of the 

VGA combined with the order reduction of the base- band filter can make such CT-∆Σ 

modulators a viable solution for receiver applications. 
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Figure 1.1:  A direct conversion receiver. (a) conventional solution. (b) low-cost 

highly integrated solution based on CT-∆Σ∆Σ∆Σ∆Σ ADC with low-pass STF.   
  

   

1.3 Outline of This Work 

This work has been organized in seven chapters. The background theory of the 

∆Σ modulators is provided in chapter-2 which concludes with an overview of the 

current state-of-the-art and the design trends. Behavioral modeling and simulation of 

various non-idealities has been discussed in chapter-3. Chapter-4 provides the details of 
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the proposed SAR-based architecture and presents the simulation and measurement 

results of a prototype modulator with a 5-bit SAR designed for a W-CDMA application. 

Chapter-5 presents two novel modulator topologies with robust STF and provides a 

methodology for designing low-pass STF with no out-of-band peaking. Capter-6 

describes design, simulation and measurement results of a prototype third-order dual-

feedback CT-∆Σ modulator intended for a 5 MHz DVB-H application. Chapter-7 

provides a summary of this work and lists the major contributions and also discusses 

some ideas for future research. 
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CHAPTER 2 

DELTA-SIGMA MODULATION FUNDAMENTALS 

 

Analog to Digital converters are key building blocks in most electronic systems. 

They serve as an interface between the real world analog signals and the digital signal 

processing heart of the system. The speed, resolution and power consumption needs of 

each application can suggest a specific ADC architecture to achieve the best trade-off 

between power and performance. ∆Σ A/D converters are the preferred architecture for 

high-resolution and low-speed applications [5]. ∆Σ modulators belong to the family of 

oversampling data converters that process many samples of the input signal to produce 

an output sample at the Nyquist rate. Moreover, ∆Σ modulators are closed-loop systems 

which are tolerant of some analog imperfections. The relatively low sensitivity to non-

idealities such as offset and mismatch allows for using simple and low cost analog 

building blocks. In addition, signal processing in a ∆Σ ADC is split between analog and 

digital sub-sections, where analog filtering is employed for rejecting the quantization 

errors from the signal band, and digital filtering is used for increasing the effective 

resolution by eliminating the out of band quantization noise [6]. This chapter seeks to 

cover the fundamentals of ∆Σ modulators and the principle behind continuous-time 

(CT) to discrete-time (DT) transformation techniques often utilized in the design of CT-

∆Σ modulators.   
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Figure 2.1:  ∆−Σ modulation ADC (a) Discrete-Time. (b) Continuous-Time.  

 

 

2.1 Oversampling and Anti-Aliasing 

The block diagrams of typical ∆Σ A/D converters using discrete-time and 

continuous-time signal processing are shown in Figure 2.1 (a) and (b), respectively. 

Both structures involve sampling which is a fundamental operation in all A/D 

converters.  The spectrum of the sampled signal will include the images of the original 

spectrum around the fundamental and all harmonics of the sampling frequency. Using 

Nyquist criterion the sampling rate, Fs needs to be at least twice the signal bandwidth fb 

to enable reconstruction of the signal from its samples. A/D converters that use the 

minimum sampling rate of Fs=2fb are called Nyquist rate ADCs.  
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Figure 2.2: Spectrum of the sampled signal and AA-Filter requirements in (a) Nyquist 

rate ADCs  (b) Oversampling ADCs 

 

In contrast, ∆Σ modulators sample the analog signal at a rate much faster than 2fb and 

are categorized as over-sampling data converters. The ratio of the actual sampling 

frequency to the Nyquist rate is called oversampling ratio (OSR) which is a key 

parameter in the design of ∆Σ modulators 

 
2

s

b

F
OSR

f
= . (2.1) 

To prevent Spectral Aliasing, the bandwidth of the signal to be sampled needs to 

be limited prior to sampling. The order and complexity of the anti-aliasing filter is 

related to the slope of its transition band. For example, when sampling frequency is near 

the Nyquist rate the slope of the transition band becomes very steep as shown in Figure 
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2.2(a), and consequently a very high-order filter will be required. However the use of 

oversampling, as shown in Figure 2.2(b), allows for widening the transition band of the 

anti-aliasing (AA) filter which significantly relaxes the filtering requirements. In 

addition to the oversampling ratio, the filter order in a wireless application depends on 

the targeted dynamic range and the amplitude of the interferers at the alias band. 

Assuming a Butterworth low-pass characteristic with 20 dB/Dec role-off the filter order, 

NAA   becomes (see Appendix A) 

 
1020 log (2 1)

ALS SIG
AA

SFDR P P
N

OSR

 + − =  − 
 (2.2) 

In the above  ⋅  indicates rounding the result to the nearest integer towards plus infinity, 

OSR is the oversampling ratio, SFDR is the targeted spurious free dynamic range in dB, 

PSIG and PALS the dBFS amplitude of respectively the input tone and the alias tone in the 

frequency band Fs-fb < fALS < Fs+fb. For example, when OSR =16, SFDR = 90 dB , 

PSIG= -6 dB and PALS = 0 dB at fALS = Fs - fb , a 4th-order anti-aliasing filter will be 

needed. Also (2.2) clearly predicts that when OSR=1 (i.e. no oversampling) the order of 

the AA filter is infinity.   

As shown in Figure 2.1(a), anti-aliasing in DT ∆Σ-ADCs is performed by an 

explicit A/D pre-filter. However in CT ∆Σ ADCs, the input signal gets band limited by 

the modulator filter Hc(s) prior to sampling, as shown in Figure 2.1(b). The implicit 

anti-aliasing of CT ∆Σ modulators is a result of moving the sample-and-hold from the 

modulator input to the quantizer front-end. This is fundamentally impossible in DT ∆Σ 

modulators since a DT filter only processes sampled signals. 
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Figure 2.3: (a) Transfer characteristics of a multi-level uniform quantizer, (b) 

quantization error profile (c) Uniform PDF of the quantization error.  

 

 

2.2 Quantization  

Quantization of the amplitude is a nonlinear operation which is inherent to all 

A/D converters. Figure 2.3(a) shows the ideal transfer characteristics of a multi-level 

uniform quantizer. The error introduced during the quantization process, as shown in 

Figure 2.3(b), is the difference between the actual input and the quantized output and is 

called quantization noise. Assuming a bounded input within the ±Vref range, the 

quantization error will be distributed uniformly over [-∆/2, +∆/2] where ∆ is the 

quantization step size defined as 

 
2

2 1

ref

N
level

VVFS

N
∆ = =

−
 (2.3) 

In the above equation, VFS is the peak-to-peak full-scale range of the quantizer, Vref is 

the reference voltage which is half of the full-scale, Nlevel is the number of quantization 

levels  related to the quantizer resolution in bits ( N ) as Nlevel = 2
N
-1  .  
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Figure 2.4: (a) Linear gain additive noise model of the quantizer.  (b) Noise power 

spectral density in Nyquist rate and oversampled quantizers.  

 

 

The total power of the quantization noise is calculated from the uniform PDF 

shown in Figure 2.3(c) as 

 

/2 2
2 2 2

/2

1
( )

12
e eP e PDF e de e deσ

∆∞

−∞ −∆

∆
= = = =

∆∫ ∫  (2.4) 

The linearized additive noise model of the quantizer shown in Figure 2.4(a) is a 

useful tool for small signal analysis of ∆Σ modulator loops. In this model the quantizer 

gain kq is defined as the slope of the line crossing the origin, and connecting the 

midpoints of the quantization steps as shown in Figure 2.3(a). A white noise 

approximation [7] can often be used for modeling the quantization noise where the 

errors are assumed to be independent of the input signal. With the white noise 

approximation, quantization noise assumes a flat power spectral density Se(f) where the 
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total power , as shown in Figure 2.4(b), is uniformly distributed over [–Fs/2 , Fs/2]. 

With the use of oversampling (i.e. fb << Fs /2) the in-band quantization noise power Pq 

becomes only a fraction of the total noise  

 
2 21

( )
12 12

b b

b b

f f

q e
f f

s

P S f df df
F OSR

+ +

− −

∆ ∆
= = = ⋅∫ ∫  (2.5) 

Using (2.5) and noting that the signal peak is approximately Vpk ≈ 2
N-1∆ the 

signal-to-quantization-noise ratio (SQNR) of an N-bit quantizer with oversampling ratio 

OSR is calculated in dB as  

 2
10

log ( )
10 log 6.02 1.76

2

sig
dB

q

P OSR
SQNR N

P

      = = + +      
 (2.6) 

The above equation shows that each doubling of the OSR increases the effective 

resolution by half bit.  

 

2.3 Noise Shaping  

The negative feedback of a ∆Σ modulator loop forces the coarse quantizer output 

to closely track the input signal in the band of interest. In other words, the in-band 

quantization noise is attenuated by the modulator loop filter and consequently the 

effective resolution is increased. This interesting property of ∆Σ modulators is called 

noise shaping. Using the combination of oversampling and noise-shaping, as shown in 

Figure 2.5 (a) and (b) respectively, a ∆Σ modulator achieves a dramatic increase of in-

band SQNR. Further processing of the modulator output by a digital low-pass filter 

eliminates the out-of-band quantization noise before down-sampling the output to the 

Nyquist rate.  
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Figure 2.5: ∆Σ modulation principles (a) oversampling (b) noise shaping. 

 

In order to gain a quantitative understanding of noise-shaping, we will refer to 

the linearized model of the DT ∆Σ modulator shown in Figure 2.6 where the coarse 

ADC is replaced by its additive noise model with gain kq . Also to account for any 

prefiltering of the input signal a separate transfer function Gd(z) is used for the input 

path. The noise transfer function of this modulator can be expressed as 

 
( )

( )
( ) 1 ( )

q

q d

kY z
NTF z

Q z k H z
= =

+
 (2.7) 

Using (2.7) the required modulator loop filter Hd(z) to realize a known NTF(z) should be  

 
1 1

( )
( )dH z

NTF z kq
= −  (2.8) 
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Figure 2.6: Linearized model of a DT ∆Σ modulator. 

 

 

Similarly the signal transfer function from X(z) to Y(z) is expressed as  

 
( )

( ) ( ) ( )
( ) d

Y z
STF z G z NTF z

X z
= = ⋅  (2.9) 

Note that in most ∆Σ modulator topologies Gd(z) = Hd(z), but in general Gd(z) and Hd(z) 

can be different. Assuming a unity gain quantizer with kq = 1 and a DT integrator as the 

modulator loop filter (i.e. 1 1( ) /(1 )dH z z z− −= −  ) a first-order noise shaping is 

obtained as  

 1
first-order( ) 1NTF z z−= −  (2.10) 

which is the classical DT differentiator with a single zero at DC. Also using (2.8) and 

assuming Gd(z) = Hd(z), the signal transfer function of the first-order modulator is 

 1
first-order( )STF z z−=  (2.11) 

which is a pure delay that does not alter the spectrum of the sampled signal.   

The NTF in (2.10) provides a first-order high-pass filtering of the quantization 

noise by a single zero at DC. To improve the SQNR, higher order NTFs can be realized 

by placing more transfer function zeros at signal band.  
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Figure 2.7: Classical L-th order Noise Transfer Functions (all zeros at DC). 

 

 

A classical higher-order NTF with all zeros at DC is expressed as  

 1( ) (1 )LNTF z z−= −  (2.12) 

In the above, L is the order of noise shaping, which in general is equal to the number of 

NTF zeros. Figure 2.7 shows the NTF magnitude response for modulator orders L=1 to 

L=4. It is noted that by increasing the order of noise shaping the NTF out-of-band gain 

is also increased. A large NTF out-of-band gain usually limits the dynamic range of the 

modulator by reducing the maximum stable input amplitude. The maximum stable 

amplitude (MSA) is sometimes referred to as the overload level.  

For an L-th order classical NTF given by (2.12) a closed-form expression can be 

derived [8] for the modulator dynamic range. To this end, the power spectral density of 

the quantization noise is obtained as 
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Figure 2.8: single-bit modulator dynamic range versus OSR for different NTF orders. 
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 (2.13) 

The power of the in-band quantization noise is obtained by integrating the noise PSD 

given by (2.13) over the frequency interval [-fb,  fb] 

 

22 2 2

(2 1)
2 sin( )
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b

b

L Lf

Q Lf
b b

f
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fOSR fOSR L OSR

π π
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∫  (2.14) 

Using the above equation the ideal SQNR of an L-th order ∆Σ modulator with N-bit 

quantization becomes [8] 

 
2 (2 1)

2

3 (2 1) (2 1)

2

N L

L

L OSR
SQNR

π

+− +
= ⋅  (2.15) 
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The above equation assumes a full-scale input with the power of Pin=0.5 (2
N-1∆)

2
, where 

∆ is the quantization step size (i.e. one LSB). It should be noted that (2.15) predicts an 

upper bound for SQNR and does not take into account any reduction due to overload. 

The SQNR of single-bit ∆Σ modulators versus OSR is shown in Figure 2.8 for different 

noise-shaping orders. These graphs show that the slope of SQNR versus OSR increases 

by increasing the modulator order L, such that for a given dynamic range target a lower 

OSR can be used with the choice of a higher order noise shaping.  

 

2.4 Higher Order Stable NTFs with Optimized Zeros 

The maximum out-of-band gain of a classical NTF with all zeros at DC grows 

exponentially with increasing the modulator order L according to || NTF ||Fs/2 = 2
L
. A 

large out-of-band gain reduces the maximum stable input range Therefore, it is 

imperative in practice to limit the NTF out-of-band gain by proper choice of NTF poles 

[8]. To this end, the NTF can be implemented as a high-pass Butterworth or inverse 

Chebyshev transfer function with a cut-off frequency outside the signal band. The out-

of-band gain is typically maximized for best SQNR while ensuring loop stability. These 

transfer functions provide an almost flat stop-band and their zero locations can be 

optimized for SQNR improvement using the following criteria [8] 

 

/21
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Figure 2.9: (a) Third-order NTF design comparison showing the effect of pole 

placement on the out-of-band gain. (b) Pole/Zero maps.   

 

A solution to (2.16) for NTFs of up to 5-th order and OSR of 100 and 64 is given 

in Table 2.1 where the optimum fzi s are normalized to the signal bandwidth. It is noted 

that the actual optimum frequencies are inversely proportional to the OSR and the 

improvement in dynamic range (∆SQNR ) depends on the NTF order only and is inde- 
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Table 2.1: Optimum NTF zeros normalized to the signal bandwidth.  

 

 Optimum NTF Zeros  

NTF Order Normalized to fb  (fz / fb ) ∆ SQNR 

1 0 0 

2 ±0.5773 +3.5 dB 

3 0 , ±0.7744 +8 dB 

4 ±0.3401 , ±0.8609 +13 dB 

5 0 , ±0.5384 , ±0.9059 +18 dB 

 

pendent of OSR. Also there is a single zero at DC whenever noise shaping order is odd. 

A more comprehensive listing of optimum zeros for NTFs of up to 8-th order and OSR 

of 64 is provided in [8]. 

 

2.5 Multi-Bit Delta-Sigma Modulators 

Single-bit quantization is widely used in low-speed ∆Σ ADCs due to its inherent 

linearity and simple design. However as shown in Figure 2.10(a) a single-bit DAC can 

assume different gain values when used in the negative feedback loop of a ∆Σ 

modulator. The gain variability is related to the statistics of the input signal and can be 

explained by Describing Function (DF) method [9-10]. In higher order modulators with 

aggressive noise-shaping, the ill-defined gain of a single-bit quantizer can pose serious 

stability issues. The root locus of a third-order single-bit modulator with different NTF 

out-of-band gain is shown in Figure 2.11 where the quantizer gain kq is linearly swept 
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Figure 2.10: ∆Σ Modulator output using (a) Single-bit and (b) Multi-bit quantization 

shown with respective transfer characteristics. 

 

 

from 0.1 to 10. It is noted that too small or too large a kq makes the modulator unstable, 

and the range of stable gain values gets more and more restricted as the NTF out-of-

band gain is increased. The minimum quantizer gain at which the NTF poles stay inside 

the unit circle is shown by kcrit. The critical quantizer gain kcrit is related to modulator 

overload where a smaller kcrit implies a higher overload level and vice versa. Therefore, 

to avoid dynamic range loss associated with overload at low input levels, aggressive 

noise shaping is not possible in single-bit ∆Σ modulators.  
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Figure 2.11: Root locus of various single-bit 3rd-order NTFs versus quantizer gain. 

 

A robust solution to this problem without compromising the NTF out-of-band 

gain is to use a multi-bit quantizer with a defined gain as shown in Figure 2.10(b). 

However, a multi-bit DAC can be nonlinear due to mismatch among its unit elements. 

Any error caused by the nonlinearity of the first DAC will find its way to the modulator 

output through the signal transfer function, just the same way as the input signal. This 

necessitates improving the element matching of the input DAC to the level 
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corresponding to the desired ∆Σ modulator linearity. To this end a variety of linearity 

enhancement techniques have been proposed in the literature in the form of background 

calibration [11] or dynamic element matching (DEM) [12].  

Most DEM techniques attenuate the DAC errors in the signal band by adopting the 

noise-shaping principle used by ∆Σ modulators. Hence their performance is influenced 

by the OSR of the modulator. At high oversampling rates a first-order DEM such as 

data-weighted-averaging (DWA) [13] can significantly relax the matching retirements 

of the DAC unit elements. However in wide-band modulators with low OSR, mismatch 

shapers are less effective, and employing a calibration technique to deal with DAC 

nonlinearity may be a more effective solution. 

 

2.6 Single Loop Delta-Sigma Modulator Architectures 

Single loop topologies are widely used because of their lower sensitivity to 

analog imperfection [8] as opposed to Multi-Loop or cascaded structures which need 

precision circuits. In the following sections we will review two major classes of single 

loop modulators using feedback and feedforward architectures and will present the 

derivation of noise and signal transfer functions in these topologies.  

 

2.6.1 Chain of Integrators with Feedback (CIFB) 

An straightforward method for implementing the noise shaping filter of a ∆Σ 

modulator is through cascading DT integrators with transfer function I(z) = z
-1

/(1-z
-1

). 

Figure 2.12 shows such a structure using the cascade of integrators with feedback 

(CIFB) which includes L feedback DACs attached to the integrator inputs in an Lth- 



 23 

 

Figure 2.12: ∆Σ modulator using chain of integrators with feedback paths. 

 

 order modulator. The modulator feedback and input path transfer functions (see Figure 

2.6) are respectively given by Hd(z) and Gd(z) as 
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In the above, ai and bi respectively represent the gain of the feedback and feed-in paths 

associated with the i-th integrator input, and ci denotes the scaling factor of the i-th 

integrator output going to the next stage. Substituting the above equations into (2.7) and 

(2.9) the NTF and the STF of the CIFB structure are obtained as 
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Figure 2.13: ∆Σ modulator using chain of integrators with feedforward paths. 

 

According to (2.19) and (2.20) the ai coefficients control the NTF of the modulator and 

bi coefficients provide leverage on STF zeros. The ci coefficients are intended for 

adjusting the integrator output swings. Also It is noted that the choice of bi = ai , for i = 

1…L , while  bL+1 =kq
-1

  (kq  is the quantizer gain) results in a flat unity gain signal 

transfer function as STF=1. These conditions also eliminate the input signal from the 

modulator loop filter, and by solely the integrator output swings. In contrast when the 

input feed-in paths are removed (i.e. bi = 0 for i=2…L+1) the integrator outputs will 

show a large signal swing which includes a significant amount of the input signal plus 

quantization noise.  

  

2.6.2 Chain of Integrators with Feedforward (CIFF) 

An alternative way of implementing single-loop noise shapers is a cascade of 

integrators with feed-forward paths (CIFF) as shown in Figure 2.13.  The CIFF structure 

relies on a single quantizer feedback and uses L feedforward paths to the quantizer input 
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to implement a target L-th order NTF. The feedback and input path transfer functions 

Hd(z) and Gd(z) respectively are 
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Using the above definitions in (2.7) and (2.9), the NTF and STF of the CIFF structure 

are obtained as  
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In the above equations ci is the scaling factor of i-th integrator input and can be used to 

adjust the integrator output swing. Similar to CIFB topology, the extra feed-in 

coefficients designated by bi , i=2…L+1, control the STF. When bL+1=kq
-1

 and bi = 0 , 

for i=2 … L, the modulator will have a flat unity gain signal transfer function (i.e. 

STF=1). Also under these conditions the modulator loop will process the quantization 

noise only and whereby eliminating the input signal from the loop filter the signal swing 

of the integrator outputs will be drastically reduced.  

A desirable feature of the CIFF structure is its single overall feedback DAC. 

This is especially advantageous in multi-standard receiver applications [14] where 

reconfigurable DACs can take a significant chip area. However the CIFF structure relies  
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Figure 2.14: ∆Σ modulator with cascade architecture. 

 

 

on an analog summer in the quantizer front-end which usually takes an extra amplifier 

to implement. In higher order modulators with numerous feedforward branches, the 

large feedback factor of the analog summer can pose a design challenge by putting a 

significant bandwidth requirement on the amplifier. 

 

2.7 Cascade Delta-Sigma Modulator Architecture 

An alternative way of realizing higher-order ∆Σ modulators is to cascade more 

robust lower-order single-loop noise-shapers as shown in Figure 2.14. In this structure 

the quantization noise of the first modulator is fed to the next stage in the cascade for 

further noise shaping. The outputs of all stages are combined in digital domain to 
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increase the noise shaping order. Referring to the 2-stage case shown in Figure 2.14, the 

output Y can be expressed in terms of modulator input and the quantization noise as 
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The above equation suggests that making G1(z)= STF2(z) and G2(z)=NTF1(z) can cancel 

out the quantization error of the first stage. Therefore under ideal conditions the output 

of the cascade modulator becomes 

 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )idealY z X z STF z STF z Q z NTF z NTF z= × + ×  (2.26)  

which shows an overall NTF equal to the product of two lower-order NTF’s. In reality, 

the G1(z) and G2(z) transfer functions are implemented digitally with highest precision 

while their corresponding transfer functions STF2(z) and NTF1(z) are implemented in 

the analog domain using modulator loop filters H2(z) and H1(z) respectively. Therefore 

the actual modulator output is expressed as 

� �

� �
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1 1 2 1 2
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( ) ( ) ( ) ( ) ( )
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= × + × +

 × − 

 (2.27) 

In the above the hat sign is used to distinguish the transfer functions implemented in the 

digital side. Clearly any mismatch between analog and digital transfer functions can 

cause leakage of the quantization noise of the first stage to the output.  

Preventing quantization noise leakage puts stringent requirements on the 

amplifier DC gain and component matching in both DT and CT implementations [15-

16]. The noise leakage issue is more exacerbated in CT cascaded modulators due to the 

dependence of the analog transfer function to the excess-loop-delay (ELD) originated 
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from the finite speed of the transistors, as well as the dependence on the absolute value 

of RC-time constants which show large variations over process corners [16]. 

 

2.8 Continuous-Time Delta-Sigma Modulators 

The background theory provided in the previous sections mostly considered DT 

∆Σ modulators which employed sampled-data loop filters. As shown in Figure 2.1(b) 

∆Σ modulators can be built around CT loop filters as well. The resulting CT modulator 

is differentiated from its DT counterpart by the placement of the sampler after the CT 

filter Hc(s). An implicit benefit of this feature is the free anti-aliasing provided by the 

modulator filter in the forward path [17]. Another significant advantage is relaxing the 

linearity requirements of the sampler due to the shaping of its errors by modulator NTF. 

Figures 2.15(a) and (b) respectively show the signal flow around the feedback 

loop of the CT and DT delta sigma modulators. For simplicity the DAC of the CT 

modulator is assumed to have a zero-order-hold (ZOH) transfer function. In both 

structures the quantizer input and outputs are sampled-data signals designated by x[n] 

and y[n], respectively. In the CT ∆Σ modulator the feedback DAC receives a train of 

sampled-data impulses y[n] and after D/A conversion holds the CT output y(t) until the 

next clock cycle. However the DAC of the DT modulator reproduces y[n] in analog 

form without altering its value. Assuming the input signal u(t) to be zero, the output of 

the CT filter at the sampling instance x(nTs) , will match the output of the DT filter x[n] 

provided the sampled impulse response of the two loops are equal, in other words [17] 
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Figure 2.15: Comparison of (a) CT ∆Σ modulator and (b) DT ∆Σ modulator loops. 
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where Z
-1

{.} and L
-1

{.} denote inverse-Z and inverse-Laplace transforms, respectively, 

and RDAC(s) is the Laplace transform of the DAC output waveform.  

In time-domain equation (2.28) can be expressed in terms of DAC waveform 

wDAC(t) and impulse responses of DT and CT loop filters hd[n] and hc(t) as 

[ ]
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d DAC c DAC c st nT
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∞∞

=
= −∞
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Equations (2.28) and (2.29) are known as the frequency-domain and time-domain forms 

of the impulse invariant transformation (IIT). It is noted that IIT establishes equivalence 

between the loop filters of the CT and DT modulators Hc(s) and Hd(z), respectively, 

based on the fact that both loops receive the same DT impulses and are expected to 

produce equal outputs at the sampling instants. This equivalence is of great practical 
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Figure 2.16: DAC waveforms and transfer functions (a) NRZ; (b) RZ ; (c)Triangular; 

(d) Exponential. 

 

 

value, since the mature theory of the DT ∆Σ modulators can be readily applied to the 

design of CT modulators.  

 

2.8.1 DAC Waveforms 

Solving the IIT in (2.28) requires knowledge of the DAC transfer function 

WDAC(s) which is the Laplace transform of the DAC waveform denoted by wDAC(t) in 

(2.29). Figure 2.16 (a) to (d) shows the transfer function and waveform of no-return-to-
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zero (NRZ), return-to-zero (RZ), triangular and exponential DACs respectively. 

Rectangular waveforms (i.e. NRZ or RZ) are commonly used due to their easier 

implementation, while the less popular triangular and exponential waveforms would 

result in better jitter tolerance [18].   All rectangular pulses, including but not limited to 

NRZ, RZ and half-way-return-to-zero (HZ) can be represented by a pulse with 

normalized break-points α and β as shown in Figure 2.16(b). The time and frequency 

domain descriptions of this DAC waveform are, respectively, 

 ( ) ( ) ( )DAC s sw t u t T u t Tα β= − − −  (2.30) 

 ( )( ) (1 )
s

s

s T
s T

DAC

e
W s e

s

α
β α

−
− −= −  (2.31) 

In (2.30) u(t) is the Heaviside (unit step) function, Ts is the sampling period, and α and 

β are normalized breaking points of respectively rising and falling edges where 0 ≤α <β 

, 0<β ≤1 . In an NRZ waveform, α = 0 and β = 1, and using these values in (2.31) 

results, as expected, in the well-known zero-order-hold (ZOH) transfer function 

 
1

( ) (1 )ssT
NRZW s e

s
−= −  (2.32) 

 

2.8.2 DT to CT Conversion Using I.I.T 

For a known DAC waveform, the CT loop filter Hc(s) can be computed using IIT 

from the prototype DT loop filter Hd(z). This will ensure that the NTFs of CT and DT 

modulators match. Similarly a backward transformation from CT to DT allows for 

modeling the non-idealities of the CT loop filter in the Z-domain for faster simulation. 

Pre-computed solution of (2.28) for DT-to-CT mapping of basic Z-domain transfer  
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Table 2.2: DT-to-CT conversion using IIT for rectangular DAC waveform. 
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functions of the form 1/( )niz z−  are given in Table 2.2 for up to the 3-rd order. The 

DAC is assumed to have a rectangular waveform with breakpoints of α and β and a 

normalized sampling period of Ts = 1. An interesting outcome of applying IIT is that a 

Z-domain pole zk with multiplicity of n is mapped onto an S-domain pole sk of the same  

such that 
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Figure 2.17: 2nd-order CT ∆Σ modulator implementations (a) CIFB, (b) CIFF. 
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As an example, let’s consider a second order ∆Σ modulator. The goal is to 

compute the loop-filter of a CT modulator with NRZ DAC (i.e. α=0 and β=1) such that 

multiplicity its NTF becomes (1-z
-1

)
2
.  Using (2.8) and assuming a unity gain quantizer 

with kq=1, the required DT loop filter is calculated from the NTF as 
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Taking the partial fraction expansion of (2.34) yields  
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Referring to the Table 2.2 data the CT transfer function is obtained as 
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1.5 1
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In both CIFB and CIFF prototype modulators shown in Figure 2.17(a) and (b), 

the CT loop TF is given by   
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Comparison the above equation with (2.36) results in the coefficient values of k1=1 and 

k2=1.5 in both structures.  

 

2.8.3 CT to DT Conversion Using Modified Z-Transform 

The modified Z-transform is a convenient and versatile tool for discretizing the 

CT filters. This approach is an extended form of the Z-transform which accounts for the 

CT events at all times in the calculated DT system. This is particularly useful in mixed-

signal sampled-data systems that include delay or sample-rate conversion. The 

definition of the modified-Z-transform for a CT signal f(t) is [19] 

 
0

[( 1 ) ] , 0 1n
m s

n

f n m T z m

∞
−

=
= − + ≤ ≤∑Z  (2.38) 

In the above, m is a fractional parameter related to the delay time td as m=1- td /Ts . It is 

noted that the Z-transform is a special case of the modified-Z-transform with m = 1 (i.e. 

no delay or td = 0). Considering the loop transfer function of the CT ∆Σ modulator 

shown in Figure 2.15(a) the equivalent DT loop filter Hd(z) can be computed using the 

modified-Z-transform as 

 { }( ) ( ) ( )
i

i

d m c DAC

m

H z H s W s=∑Z  (2.39) 

The parameter mi in the above equation is related to the break points in the DAC 

waveform. For instance, in the case of the rectangular waveform shown in Figure 

2.16(b) the mi values are obtained as m1=1-α and m2=1-β .  
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Figure 2.18: 2nd-order CIFB prototype CT ∆Σ modulator with triangular DAC. 

 

 

 

The application of the modified Z-transform to discretization of CT 

∆Σ modulator loops is explained by way of example. Consider the second-order 

prototype modulator shown in Figure 2.18 with a half-return-to-zero (HZ) DAC 

waveform and unknown coefficients k1, k2 and g1. The goal is to derive the modulator 

coefficients such that it shows a 2nd-order NTF with 3dB out-of-band gain and 

optimized zeros at OSR=32 as 
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Using (2.8) and assuming a quantizer gain of kq=1 the target DT loop filter becomes  
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Also the loop filter of the CT modulator is derived from Figure 2.18 as 
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Table 2.3: Modified Z-Transform of basic CT transfer functions up to 4-th order. 
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while the DAC transfer function using the data shown in Figure 2.17(b) is 
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Note that a normalized sampling period of Ts=1 is assumed in this example to simplify 

the derivations. Applying (2.39) to the loop transfer function of the modulator leads to  
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In the above, parameter γ is related to the resonator feedback as γ2 = g1 (see (2.42)).  

The Zm-domain equivalents of the basic CT transfer functions of up to the 4
th

 

order are listed in Table 2.2 [19]. Substituting for TF’s in (2.44) from 3rd and 6th rows 

of Table 2.2 we obtain 
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 (2.45) 

Comparing the above equation with (2.41) a nonlinear system of equations with three 

equations and three unknown is formed which its solutions yields the coefficient values 

as  g1=0.003,  k1=0.436 and k2=1.44 .  

 

2.8.4 Excess Loop Delay 

In practical CT-∆Σ modulators, there exists a certain amount of delay between 

the quantizer sampling instance and the DAC output, which originates from the limited 

switching speed of the transistors. This pure delay is known as excess loop delay (ELD) 

[20] which can be detrimental to the stability of the modulator loop. If the DAC 

waveform is not contained in one sampling period and enters the adjacent cycle due to 

the ELD, the effective order of the loop filter will be increased. As shown in Figure 2.19  
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Figure 2.19: Decomposition of a delayed DAC waveform. 

 

this increase in the loop-filter order can be explained by modeling the delayed DAC 

waveform as the superposition of two individual pulses as  

 1 2( , ) (0, )( ) ( ) ( )
d dTw t w t w t Tτ τ= + −  (2.46) 

where w1(t) represents a pulse from α = τd  to β = T , and w2(t) represent a pulse from  

α =0  to β =τd  delayed by one clock cycle. The resulting Z-transform is calculated as 

the superposition of the two terms, where the term associated with w2(t) includes a z
-1

 

factor which is responsible for the increased order of the loop filter.  

Let’s consider the 2
nd

-order prototype modulators shown in Figure 2.17. The 

equivalent DT loop filter can be computed as a function of the ELD by applying the 

modified Z-transform to the 1/s and 1/s
2
 terms of the Hc(s) in (2.37) 
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Figure 2.20: NTF Pole/Zero map subject to 0 to 30% ELD.  
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Using k1=1 and k2=1.5 in (2.37) the discretized loop filter becomes 
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The root-locus of the NTF poles versus normalized ELD of α is plotted in Figure 

2.20 where the DT loop transfer function of the modulator is given by (2.49). Clearly 

the number of poles is increased from 2 to 3 even for an infinitesimal delay. Further  
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Figure 2.21: Use of direct feedback for ELD compensation. 

 

 

 

increase of ELD pushes NTF poles outside of the unit circle where the critical delay is 

shown with αcrit = 0.2.  

The effect of ELD on the stability manifests itself as reduced overload-level 

which adversely affects the modulator dynamic range. It has also been shown that the 

ELD can elevate the quantization noise floor by degrading the NTF at low-frequencies 

[20]. Therefore to avoid potential dynamic range losses the excess delay in CT ∆Σ 

modulator loops needs to be controlled.  

 

2.8.5 Classical ELD Compensation  

The ELD of a CT ∆Σ modulator can be compensated by adding a direct feedback 

to the quantizer input [21] as shown in Figure 2.21. The CT modulator loop filter can be 

expressed in terms of the coefficients k1, k2 and kd as 

 1 2
2

( )c d

k k
H s k

ss
= + +  (2.50) 
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Assuming a normalized ELD of α and NRZ DAC waveform, the equivalent DT loop 

filter can be obtained from the right-half-side (RHS) of (2.47) and (2.48)  

     1
2 1 2

2 - 1
( ) (RHS of (2.47))+ (RHS of (2.48))

( 1)
d d

z
H z k z k k

z
−= + × × =

−
 (2.51) 

In the above equation the parametric Hd(z) is matched with the ideal loop TF of the 

second-order modulator given in (2.34). From the comparison of the numerator terms a 

system of three equations and three unknowns is formed as 

 

2
1 2

2
1 2

2
1 2

0.5 0

(0.5 ) (2 1) 2 1

(0.5 0.5) (1 ) 2

d

d

d

k k k

k k k

k k k

α α

α α α

α α α

 − + = + − + − − = − − + + − + =

 (2.52) 

Solving the system of nonlinear equations in (2.52) yields the coefficient values of the 

delay compensated modulator as k1=1,  k2=1.5+α  and kd=0.5α (α+3) . For example 

assuming a 50% ELD or α = τd / Ts = 1/2  , the modulator coefficients become 1, 2 and 

0.875 for k1, k2 and kd respectively.  

 The direct feedback technique can also be used to compensate for the limited 

unity-gain-bandwidth (UGBW) of the amplifiers [22] or any non-ideality similar to ELD 

that causes phase lagging in the modulator loop. 
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2.9 State-of-The-Art and Design Trends 

A literature survey on recently published ∆Σ modulators is summarized in Table 

2.4. As stated earlier, ∆Σ modulators can be categorized under two distinct families of 

DT and CT based on the structure of their loop filter. DT modulators are implemented 

by one of the switched-capacitors (SC) or switched-currents (SI) techniques and CT 

modulators are often realized by Active-RC or Gm-C techniques. The signal bandwidth 

(fBW), signal-to-noise-ratio (SNR), signal-to-noise-and-distortion-ratio (SNDR), and 

power consumption are key performance metrics that can be used for comparing 

different designs. 

The figure-of-merit (FOM) for ADCs suggested by the analog committee of the 

IEEE International Solid-State Circuits Conference [23] takes into account the power 

dissipation, resolution, and sampling rate of ADCs It represents the energy used per 

conversion step 

 
2

ADC N
BW

P
FOM

f
=  (2.53)   

where P is the power consumption, N is the stated number of bits, and FS is the 

sampling rate. The FOM in (2.53) produces optimistic results by not accounting for the 

performance limitation of ADCs due to harmonic distortion.  Based on the peak signal-

to-noise-and-distortion-ratio (SNDR) of an ADC its effective-number-of-bits (ENOB) is 

defined as 

 
1.76

6.02

SNDR
ENOB

−
=  (2.54) 

A FOM which is common in the recent literature [24] takes into account the 

ENOB and the Nyquist rate instead of the sated number-of-bits (i.e. N in (2.53)) and the 
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sampling frequency respectively. This figure of merit is known as the quantization 

energy which is defined as 

 1
2 (2 )ENOB

BW

P
FOM

f
=  (2.55) 

There is another FOM for ADCs suggested earlier by Robert Walden [25] which 

is nearly the inverse of (2.55)  

 2
2ENOB

sF
FOM

P
=  (2.56) 

The FOM1 in (2.55) emphasizes the power consumption, where the Walden’s 

FOM in (2.56) emphasizes the effective resolution of an ADC. When comparing ∆Σ 

modulators a smaller FOM1 or a larger FOM2 suggests a better performance.  

 In order to obtain an idea about the current design trends, and to compare the 

potentials of DT and CT implementations we have surveyed both design approaches. 

Figure 2.22 puts into contrast the SNDR performance versus signal bandwidth of CT 

and DT implementations. From the data, the highest signal bandwidth (or conversion 

speed) is achieved by a CT design. Even though higher dynamic range designs are 

mostly DT, those implementations are still in the low-bandwidth range. In a different 

comparison, power consumption versus signal bandwidth is plotted in Figure 2.23 

which shows that CT designs, even at wider bandwidths, show less power consumption 

than their DT counterparts. A final comparison is provided in Figure 2.24 based on the 

publication year and achieved FOM. The data clearly show that the current trend is 

toward CT designs and an increasing number of published ∆Σ works are based on the 

CT approach. Moreover, it is seen that the CT designs have a better FOM than their DT 

counterparts, which can explain the motivation behind the existing design trend.   
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Table 2.4: State of the Art Technology in Delta-Sigma Modulator Design. 

 

Type Ref. Year 
Fs 

(MHz) 
BW 
(MHz) 

Vdd 
(V) 

P 
(mW) 

SNDR 
(dB) 

FOM2 

(MHz/mW) 
Architecture 

Process 
(nm) 

JSSC01 

Vleugels 
2001 64 2 2.5 150 87 308 2(5B)-2(3B)-1(3) 500 

ISSCC02 

Jiang 
2002 32 2 1.8 150 82 173 5(4B) 180 

ISSCC03 

Dezzani 
2003 38.4 2 1.2 4.3 64 756 2(2.3B)-1(2.3B) 130 

JSS04 

Balmelli 
2004 200 12.5 1.8 200 72 256 5(4B) 130 

ISSCC04 

Gaggl 
2004 105 1.1 1.2 15 76 476 1(3B) 130 

JSSC05 

Nam05 
2005 40 1.25 1.2 87 89 419 2(5B)-2(3B) 250 

ISSCC05 Yu 2005 40 1 1.3 2.1 61 547 2(4B-DEM Less 90 

ISSCC05 

Fujimoto 
2005 100 4 1.8 35 70 371 4(4B) 180 

ISSCC05 

Brewer 
2005 20 1.25 2.5 215 97 427 

2(5B)-2(3.3B)-

Flash(3.3) 
250 

ISSCC05 

Bosi 
2005 80 10 3.3 185 73 248 

2(4b)+ 

Pipeline(9b)+LMSFIR 
180 

ISSCC06 

Kwon 
2006 144 2.2 1.8 14 82 2043 2(3.3B) 180 

DT 

JSSC09 

Fujimoto 
2009 100 4 1.2 / 3 11.7 65.1 1005 4 (4B)+DEM 90 

JSSC02 

Henkel 
2002 100 1 2.7 21.8 56.7 32 2(1B) Complex 650 

ISSCC03 

Philips 
2003 64 1 1.8 4.4 75.5 1394 5(1B) Complex 180 

JSSC03 

Veldhoven 
2003 154 2 1.6 4.5 72 1820 5(1B) 180 

ISSCC04 

Putter 
2004 280 1.1 1.8 6 77 1338 3(1B-9FIRDAC) 180 

ISSCC04 

Yan 
2004 35.2 1.1 3.3 62 83 258 3(5B) 500 

JSSC04 

Paton 
2004 300 15 1.5 70 64 348 4(4B) 130 

JSSC04 

Dagher 
2004 2000 1.23 1.8 18 79 628 2(1B) 180 

JSSC05 

Philips 
2005 64 1 1.8 2.1 59 434 4(1B) 180 

JSSC05 

Dorrer 
2005 104 2 1.5 3 70 2167 3(4B-Tracking) 130 

ISSC06 

Mittereger 
2006 640 20 1.2 20 74 4096 3(4B) 130 

JSSC09 2009 250 10 1.2 18 65 1614 3 (4B) 130 

 

CT 

JSSC-11 

Kauffmann 
2011 500 25 1.2 8.5 63.5 7192 3 (4B) 90 



 45 

SNDR versus Signal Bandwidth

0

20

40

60

80

100

120

0 5 10 15 20 25

Signal Bandwidth, MHz

CT

DT

 
Figure 2.22: SNDR and signal bandwidth of recently published ∆Σ modulators. 

 

 

 

 
Figure 2.23: Power and signal bandwidth comparison of recent publications. 

 

 

 
Figure 2.24: Comparison of FOM and Publication year for CT and DT. 
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2.10 Summary  

This chapter provided a brief introduction to the fundamental theory of the delta-

sigma modulators. The classical architectures and design trade-offs were discussed and 

important design equations and their application was explained by way of example. 

Also important non-idealities, such as excess loop-delay pertinent to CT ∆Σ modulators, 

were explained and the delay compensation technique was presented in details. The 

fundamental theory provided in this chapter will be frequently referred to and used 

throughout this dissertation. 
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CHAPTER 3 

BEHAVIORAL MODELING OF NON-IDEALITIES 

A continuous-time delta-sigma modulator is a mixed-signal system composed of 

digital and analog building blocks. Designing a robust modulator requires thorough 

analysis and simulation to make sure that each sub block functions as expected in 

conjunction with all other blocks and the whole system meets the design targets. 

Traditional tools such as SPICE are slow and inefficient for mixed-mode simulations 

and take too long for most optimizations. On the other hand, behavioral modeling can 

reduce the design and simulation time and also provide better insight into the system 

behavior in the presence of non-idealities. Behavioral models are a set of equations or 

look-up tables that define the relationship between the inputs and outputs of each sub-

block. In this work we have used standard tools like MATLAB and SIMULINK [26] for 

modeling purposes. 

The following sections will explain the modeling techniques used in this work 

for analyzing the effect of important non-idealities such as, amplifiers limited unity 

gain-bandwidth and DC gain, amplifiers input stage nonlinearity, DAC element 

mismatch, ADCs comparator random offset, and clock jitter. 

 

3.1 Amplifier Unity Gain Bandwidth 

The loop filter of a CT-∆Σ modulator is made up of a cascade of CT integrators. 

The integrator can be implemented using the Active-RC or gm-C techniques as shown 

in Figure 3.1(a) and (b) respectively. In this work we will only consider Active-RC 

integrators due to their high linearity and their ability to provide a current sink path to  
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Figure 3.1: Continuous-Time integrators (a) Active-RC and (b) Gm-C . 

 

 
Figure 3.2: (a) A CT integrator use-case in a DS modulator; (b) Circuit level 

implementation using Active-RC technique. 

 

the feedback DACs. Figure 3.2(a) shows the block diagram of a multi-input CT 

integrator with k1…kN input scaling factors. The ideal integrator output can be written in 

terms of the input signals as 

1 1 2 2
1

( ... )out N NV kV k V k V
sRC

= + + +  (3.1) 

The active-RC implementation of the above equation is shown in Figure 3.2(b). The 

unity-gain angular frequency of an integrator with gain k1=1 is equal to the sampling 
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frequency Fs or proportional to the inverse of the RC-time-constant (i.e. ωu =1/RC = 

Fs). The input gains are implemented by scaling the reference resistor R (RC = Ts) 

according to coefficients k1 … kN. The feedback resistor Rz is present either implicitly, 

as the resistance of the capacitor trimming switch, or explicitly as the nulling-resistor 

that adds a zero to the TF. The normalization factor kz is used to represent the feedback 

resistance the same way as the ki’s for the input resistors. Since the Active-RC integrator 

employs an amplifier in its core, its transfer function will be affected by the amplifier 

non-idealities such as limited gain-bandwidth. The Active-RC integrator output voltage 

in Figure 3.2(b) can be written as 

 1 ( ) ( )
( 1)

[1 ( ) ( )]

N

i i
vi

out
z v

kV
sRC A s s

V
sRC k A s s

β

β
=

−
 

= + 
+  

∑
 (3.2) 

In the above equation β(s) is the feedback factor of the integrator loop and Av(s) is the 

voltage transfer function of the amplifier from the virtual ground node Vx to the output 

node. It is noted that the first factor in (3.2) represents the ideal transfer-function, the 

second factor describes the zero due to the series resistance, and finally the third factor 

accounts for the amplifier and feedback non-idealities. The feedback factor β (s) is 

derived from Figure 3.2(b) as 

 

1 1

( )

(1 )
N N

i
i

zi i

sRC
s

k
sRC k

k

β

= =

=

+ +∑ ∑
 (3.3) 

Knowing the amplifier transfer function Av(s), a block diagram representation of 

equation (3.2) is depicted in Figure 3.3 that can be used as a behavioral model for the 

active-RC integrators in MATLAB or SIMULINK. The blocks enclosed in dashed lines  
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Figure 3.3: Behavioral model of the active-RC integrator. 
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Figure 3.4: Effect of the first-integrator’s amplifier UGBW on SNDR of a third-order 

feedforward ∆Σ-modulator. Results shown for different kz ‘s. 

 

 

is identical to the block diagram of the ideal integrator shown in Figure 3.2(a) and the 

rest models the non idealities. Assuming a single-pole model for the amplifier the 

voltage transfer function can be written as 

 
1

0

1
( )

/
v

u

A s
s Aω −=

+
 (3.4) 
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where ωu is the angular unity-gain frequency of the amplifier and A0 is the DC gain. 

Using this equation in the behavioral model in Figure 3.3 allows for modeling the effect 

of amplifier unity gain-bandwidth (UGBW) and DC gain on modulator performance. 

For instance, simulation of the SNDR performance versus amplifier UGBW of the first-

integrator is shown in Figure 3.4 for a third-order feedforward ∆Σ-modulator. When 

kz=4 the ωu can be as low as 2Fs. SNDR experiences a sharp drop due to instability for  

ωu below 2Fs. By increasing kz the minimum required ωu will increase but it does not 

lead to considerable improvement in SNDR. This simulation clearly shows that the 

parameter kz can be leveraged to improve the stability and performance of a CT-∆Σ 

modulator without too much increasing the amplifier UGBW. 

 

3.2 Amplifier Input Stage Nonlinearity 

The integrator model shown in Figure 3.3 is slightly modified to isolate the 

amplifier virtual ground node by re-ordering the Av(s)β(s) term, as shown in Figure 3.5. 

Gaining access to the node Vx makes it possible to model the non-linear behavior of the 

amplifier input stage. The input stage non-linearity stems from the square-law Current-

Voltage equation of the MOS transistors. Figure 3.6(a) shows a differential pair with tail 

bias current IB which is typically used in the amplifier input-stage. Considering a fully 

differential design with no mismatch or offset and assuming that all transistors are in 

saturation and are biased in strong inversion, the differential output current can be 

written as [27] 

( )

2 3

. 3

1
1

4 8
d B d d d

out diff B
GS T GS T GS T GS T

v I v v v
i I

V V V V V V V V
−

   = − ≈ −     − − − −
 (3.5) 
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  Figure 3.5: Behavioral model for modeling the input stage nonlinearity. 

 

 

Equation (3.5) assumes weak nonlinearity conditions meaning that distortion is 

dominated by the third harmonic and the higher order nonlinearities are ignored. The 

general nonlinear equation can be written as  

 3
1 3 ...out d di g v g v= + +  (3.6) 

By comparing (3.5) and (3.6) the g1 and g3 terms are identified as 

 

1

3 3

( )

8( )

B

GS T

B

GS T

I
g

V V

I
g

V V

 = − − = −

 (3.7) 

Assuming a sine wave input and using (3.6) and (3.7) the third-order harmonic 

distortion becomes 

 
2

3

1

1 1
3

4 32
d

GS T

g v
HD

g V V

 = =   −
 (3.8) 

Assuming weak nonlinearity conditions and ignoring the high order distortion terms. 

The above equation provides a first-order estimation of the total harmonic distortion. 

A major limitation of the HD3 given by (3.8) is the assumption of quadratic I-V 

characteristic for the MOS transistors. However in a deep submicron CMOS process, 
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Figure 3.6: (a) A typical input stage differential pair. (b) Simulated V/I transfer curve of 

the diff. pair using SPICE. (c) Distortion of the output current, SPICE vs. equation. 

 

the quadratic equation does not hold. In this case the designer can use SPICE to generate 

a table of output current versus input voltage at the bias point of interest IB. The table 

can then be ported into MATLAB to compute the linear and nonlinear coefficients using 

curve fitting. This method provides better correlation between behavioral and circuit 

level simulations and can predict the total-harmonic-distortion  
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Table 3.1: Linear and non-linear coefficients of the input stage Gm. 

 

3 5 7 9
1 3 5 7 9out d d d d di g v g v g v g v g v= + + + +  

coefficient g1 g3 g5 g7 g9 

value 0.0029 -0.0224 0.0584 0.8979 -6.3806 

 

(THD) with better accuracy. Figure 3.6(b) shows the trans-conductance of a PMOS 

differential pair in a 130nm CMOS process obtained using SPICE simulation. The VGS-

VT of the input transistor was 120mV and the quiescent tail current was 480 uA. The 

results of a 9
th

 order polynomial curve fitting on the data points of Figure 3.6(b) are 

provided in Table 3.1. It is noted that all even-order coefficients are zero owing to the 

differential nature of the circuit. 

Figure 3.6(c) shows a comparison between the simulated output spectrums of a 

differential pair using curve fitting approach versus the approximate computation by 

equation (3.8). The input signal is the sum of a 100 mV-peak sinewave at 350 KHz and 

white noise 100 dB below the 100mV full-scale. The equation-based spectrum is 

intestinally shifted down by 20dB for better visibility. There is a good correlation 

between the HD3 obtained from curve-fitting on SPICE data and the HD3 estimated by 

(3.8) although the curve fitting approach is able to predict higher order distortion terms.  

Using (3.6) for describing the nonlinear block of the integrator model in Figure 

3.5 allows for quick evaluation of the amplifier input-stage nonlinearity in MATLAB. 

This practice is essential when designing the input differential pair for a given THD 

target and helps to reduce the power consumption by avoiding the overdesign of the tail 

bias current. 
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3.3 Feedback DAC Element Mismatch 

A popular topology for implementing feedback DACs in delta-sigma modulators 

is shown in Figure 3.7. It is based on M =2
N
 equally-weighted elements in parallel 

where the elements are controlled by the received N-bit binary input which gets 

converted to a 2
N
 bit unitary scrambled data by a binary-to-thermometer decoder and 

element selection logic blocks. Also the unitary code can be directly produced by a flash 

quantizer, which will obviate the need for a binary-to-thermometer decoder. The 

element selection logic may be used for linearity enhancement purposes by modifying 

the thermometer code before reaching the DAC. In any case the data received by the M 

unit-element DAC will be a vector V defined by the following equation 

 
� �

{ }

1 1
( ) ... ... 1 ... 1 1 1

1, 1

M j M

k M k

j j k j k

k v

v v v

× ×

−

≤ >

= = − −

∈ = = −

V
� �� �
� �⋯� �	


�


� 	




�




�� � � (3.9) 

The value of each element in V is either 1 or -1. A +1 means adding the corresponding 

element value to and -1 means subtracting it from the output. This definition assumes 

that the DAC has a fully-differential circuit structure. Unit elements can be made of 

capacitors, resistors or current-sources depending on the circuit topology. In a real world 

DAC there will be random mismatch between the actual and nominal (ideal) values of 

each element. Assuming a normalized value of 1 for each element, the mismatch error 

can be represented by an M×1 random vector with Gaussian distribution having a zero 

mean and standard deviation of unitσ . The MATLAB Statistics Toolbox [28] can be 

used to generate and store the mismatch vector W as 

1 unit 1 Mrandom( 'normal' , 0 ,  , M , 1 ) = w w
T

M σ× =W � �…� � �  (3.10) 
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Figure 3.7: A generic unitary DAC structure including the element selection logic. 

 

 

 

The output voltage corresponding to the input with decimal value k is computed using 

 

11

( ) (1 ) 1 ... 1 1 1

1

out

k M k
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v k
M M
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= ⋅ + = − − ⋅
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�




�� � � � �
� � �

 (3.11) 

In the above equation M is the number of elements, VFS is the peak output voltage, 

jw is the error in the j-th element and V is the element selection vector corresponding to 

input k, where 0 k M≤ ≤ . Equation (3.11) can be used for modeling the effect of 

DAC element mismatch in ∆Σ modulators. In the absence of an effective dynamic 

element matching scheme, the random mismatch among the units of the main DAC, can 

distort the ∆Σ modulator output. For example Figure 3.8 shows the output spectrum of a 

third-order ∆Σ modulator using a 4-bit DAC in the feedback path with 0.1% random 

mismatch among its 16 unit-elements. The input signal is a -3 dBFS sinewave at 750 

KHz while the modulator bandwidth is 5 MHz. The output spectrum shows a 3
rd

-order 

harmonic distortion at -78.5 dBFS and the THD is -78 dB. The theoretical standard 
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Figure 3.8: Behavioral simulation of DAC element mismatch (σ  = 0.1%)  

 

 

deviation of the worst-case error in an M-element DAC with unit mismatch unitσ  has 

been derived in the literature [29] as 

 ( ) 1

2
unit

worst

Vo

VFS M
σ σ
∆

=  (3.12) 

For M=16 and 0.1%unitσ = , the above equation predicts -78 dBFS noise power which 

is in accordance with the THD number obtained from the behavioral simulation. 

 

 

3.4 Data Weighed Averaging 

Data Weighted Averaging (DWA) is an effective dynamic element matching 

(DEM) technique which is employed in this work for improving the linearity of the 

multibit DACs. The DWA algorithm [13] scrambles the received thermometer code in a 

way that all elements of the DAC are selected an equal number of times over a long run. 

Figure 3.9 (a) shows the operation of the technique using a 4-bit, 15-unit DAC example. 
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Figure 3.9: (a) DWA operation in a 4-bit DAC.  (b) Hardware implementation. 

 

The numbers on the left represent the stream of the incoming data and the numbers at 

the bottom indicate the number of times that each element is used. Each time k elements 

are selected starting from element p+1 to p+k where k is the input data and p < M is a 

memory-stored pointer. To be used during the next cycle, the pointer gets incremented 
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by k to its new value p+k using a modulo ‘M’ adder to enforce the condition p < M . A 

hardware implementation of the algorithm is depicted in Figure 3.9(b) which includes a 

barrel shifter (parallel shifter), a 1-of-M decoder, an N bit register, a modulo ‘M’ adder 

and a thermometer to binary encoder. At the beginning of each cycle the pointer value is 

updated as 

 [ ] mod( [ 1] [ 1], )p n p n k n M= − + −  (3.13) 

where mod(*, M) is the modulo ‘M’ operation and k[n-1] and p[n-1] are the previous 

values of the input data and the shit pointer respectively. 

The input vector V to an M-element DAC using DWA algorithm is defined as  

� �
1

( ) ... ...

1 ; [ ] min( [ ] [ ], )

1 ; (1 mod( [ ] [ ], )) & ( [ ] [ ] ) 

1 ; else

DWA j M

j

k v

p n j p n k n M

v j p n k n M p n k n M

×=

+ < ≤ += + ≤ ≤ + + >−

V

 (3.14) 

where k[n] and p[n] are the current values of the incoming data and the shift pointer, 

respectively. From a behavioral modeling perspective, the difference between DACs 

with and without DWA lies in the definition of vector V, as it is evident from the 

comparison of equations (3.9) and (3.14). Once vector V is defined, the output voltage is 

produced the same way as a normal DAC (i.e. without DWA) by using equation (3.11). 

Hence 

 ( ) (1 )out DWADWA

VFS
v k

M
= ⋅ +V W  (3.15) 

where the mismatch vector W is given by (3.10).  
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Figure 3.10: Output spectrums with and w/o DWA obtained by behavioral modeling. 

 

 

A comparison of the ∆Σ-modulator output spectrum with and without DWA is 

shown in Figure 3.10. The modulator employs 4-bit, 15-element DAC with 0.1% unit 

element mismatch (σ = 0.001). The THD of the modulator when DWA is turned off is 

limited by a strong third-harmonic at -78.5 dB which limits the SNDR performance to 

78 dB. However after enabling DWA, the harmonic components drop below noise floor 

and SNDR performance improves to 87 dB. In this simulation the DAC with DWA was 

modeled using equations (3.10), (3.13), (3.14) and (3.15), and the one without DWA 

was modeled using (3.9), (3.10) and (3.11). 
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3.5 Flash Quantizer 

An N-bit flash quantizer is composed of M comparators and M reference levels 

produced by a resistor string as shown in Figure 3.11(a). Each comparator detects the 

sign of Vin-Vj-∆Vj, where Vj and ∆Vj are the ideal reference level and the offset error of 

the j-th comparator respectively. Also depending on the number of comparators, the 

transfer characteristics of a Flash quantizer can be made mid-rise or mid-tread, as shown 

in figures 3.11(b) and (c) respectively. The reference levels of mid-rise and mid-tread 

flash are defined as  

 

1 1

1

1

2 1 ; 1 2 1 : mid-rise

2 1 2 ; 1 2 : mid-tread

T

M M

N N

j N N N

V V

j j
V

j j

×

− +

− + −

=

 − ≤ ≤ −=  − − ≤ ≤

V � �…� � �

 (3.16) 

The above equation assumes a normalized full-scale range of +/- 1V for the quantizer. It 

is also noted that the number of comparators M is 2
N
-1 and 2

N
 in mid-rise and mid-tread 

cases, respectively. Although the mid-tread flash costs one more comparator to 

implement, it is preferred over the mid-rise due to its zero gain around the mid-scale and 

adding one more quantization level. 

Assuming negligible mismatch and random errors in the resistor string, the 

quantizer trip points will be mainly affected by the random offset of the comparators. 

The comparator offset can be modeled by a set of M random numbers with Gaussian 

distribution and zero mean. The numbers can be generated using the ‘random’ function 

of the MATLAB Statistics toolbox as  

1 offset 1 Mrandom( 'normal' , 0 ,  , M , 1 )= V V
T

M σ×∆ = ∆ ∆V � �…� � � (3.17) 
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Figure 3.11: (a) Flash quantizer architecture. (b) Mid-rise  and (c) Mid-tread transfer 

characteristics. 

 

In the above equation, σoffset is the standard deviation of comparator’s input-referred 

offset normalized to the 2 V full-scale range ( i.e. ± VFS/2 = ± 1 V). The output of the 

Flash quantizer is an M×1 vector Q computed as 

[ ]
{ }

[ ]( )1 1 1 1
1, 1

sign
j

T

M s M in s M M
Q

nT Q Q v nT× × ×∈ −
= = − −∆Q V V� �…� � �  (3.18) 

The ‘sign’ in (3.18) is the zero crossing function with two possible values of +1 or -1 

depending on the sign of its argument, while zero is treated as a negative number. Also 

vin[nTs] denotes the input voltage at the n-th sampling instance.  
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Figure 3.12: Effect of comparator offset in a 3
rd

-order ∆Σ with 4-bit flash quantizer. 

 

The behavioral model of the flash quantizer is formed around equations (3.16), 

(3.17) and (3.18) which allow a fast simulation of comparator random offset. As an 

example we have simulated the effect of 1/2 LSB and 1/8 LSB offset in a third-order ∆Σ 

modulator using a 4-bit flash quantizer.  Figure 3.12 shows a comparison of modulator 

output spectrum for the two offset standard deviations. The SNDR is 76 dB and 85 dB 

respectively for 1/2 LSB and 1/8 LSB offset cases, while the ideal case SNDR is 87 dB. 

In the half-LSB offset case the dominant distortion term is an HD2 at -82 dB. Clearly 

the flash quantizer is capable of generating strong even harmonics that can severely 

degrade the THD performance. The even harmonic distortion is attributed to the 

asymmetrical transfer characteristics of the flash quantizer around its mid-scale which 

occurs irrespective of the modulator circuit being fully-differential or single-ended. 
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Figure 3.13: (a) General structure of a SAR quantizer. (b) A switched capacitor SAR. 

 

 

3.6 Successive Approximation Quantizer 

The conceptual block diagram of a successive approximation (SAR) quantizer is 

shown in Figure 3.13(a). An N-bit SAR includes an input sampler, a single comparator, 

an N-bit feedback DAC and SAR register. A circuit-level implementation using 

switched-capacitors technique is shown in Figure 3.13(b). This circuit merges the input 

sample-and-hold and the charge-redistribution SAR DAC into one block. The switched-

capacitors DAC is made of 2
N
 unit capacitors and is controlled by the SAR register. The 

offset of the comparator causes a DC shift in the quantizer response which does not 

affect the linearity. However the nonlinearity of the SAR DAC, due to mismatch among 
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its unit elements, directly affects the transfer characteristics of the quantizer and is the 

major cause of signal distortion. Just like the main feedback DAC, the mismatch of a 

SAR DAC can also be expressed by an M×1 error vector W using (3.10), where M=2
N
 

and N is the quantizer resolution. The actual capacitor array, including mismatch errors, 

can be represented by an M×1 vector C as 

 1 1 1(1 ) 1 1
T

M u M u Mc c W W× ×= + = + +C W � �…� � �  (3.19) 

The SAR quantizer resolves N bits sequentially during N conversion phases. At 

each phase the SAR register recursively updates the SAR DAC analog output according 

to its output code k[n] where 

 

1

1

1

[ ] 2 , 1

[ ] 2 [ ]2 , 2

N

n
N n N j

j

k n n

k n b j n N

−

−
− −

=

 = = = + ≤ ≤
∑

 (3.20) 

In the above equation b[j]’s are the bits detected by the comparator prior to the current 

phase n. The bits are detected by starting from MSB=b1 at the first phase, and finishing 

by LSB=bN at the last. The detection sequence can be expressed by the following 

recursive equation 

 { }

[ ] 2

0,1
1 [ ] 1

[ ] H[ ( )]
2

Nk n
ref

in offset i jN
u i j k n

V
b n V V C C

C
∈

= = +
= + − −∑ ∑  (3.21) 

In the above, H[ 
. 
] is the discrete unit step function (i.e. H[x>0]=1 and  H[x≤0]=0 ) , Vin 

is the sampled input, Voffset is the comparator’s input-referred offset, Vref =VFS/2 is the 

quantizer reference voltage, Cu is the ideal unit capacitor, and Ci and Cj’s are the actual 

capacitor values from (3.19) which include mismatch. According to (3.21) b[n] depends 
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Figure 3.14: Behavioral modeling of a 4-bit SAR in a 3
rd

-order ∆Σ modulator.  (a) 

Comparison of output spectrums. (b) Performance statistics versus matching. 

 

on k[n] which in turn depends on all previously detected b[j]’s ( j ≤ n-1 ) according to 

(3.20). At the end of the N-th phase the SAR quantizer produces an output code with the 

following decimal value 
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1

[ ]2
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N j
out

j

D b j −

=
=∑  (3.22) 

A behavioral model for the SAR quantizer can be formed using equations (3.10), 

and (3.19) to (3.22). As an example, a third-order ∆Σ modulator with 4-bit SAR 

quantizer is simulated for two different capacitor matching levels of 3-bit (i.e. σunit=2
-3

) 

and 5-bit (σunit=2
-5

). Figure 3.14(a) shows modulator output spectrum versus capacitor 

matching. The SNDR is 82.5 dB and 86.9 dB for the 3-bit and 5-bit matching 

respectively while the no mismatch SNDR is 87 dB.  Figure 3.14(b) shows the results of 

a more comprehensive simulation which looks at the statistics of the SNDR 

performance versus SAR capacitor matching. Each point represents the mean and 

standard deviation of 100 runs. As expected the average SNDR drops by decreasing the 

matching levels, whereas the standard deviation of SNDR increases. In other words, the 

expected minimum SNDR (3σ  minimum) decreases at a faster rate when lowering the 

matching levels.  

It is worth noting that the presented SAR modeling considers only the static 

errors related to element mismatch and aims providing guidelines for component sizing 

and yield analysis. However, it does not take into account dynamic errors like limited 

bandwidth and meta-stability of the comparator, or charge injection of the switches. To 

evaluate the latter error mechanisms we will still rely on SPICE simulations. 
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Figure 3.15: Jitter in the feedback DAC (a) RZ waveform; (b) NRZ waveform. 

 

 

3.7 Clock Jitter 

Timing errors in the feedback waveform of a CT-∆Σ modulator, caused by clock 

jitter, can result in random fluctuations of the charge stored in the integration capacitors. 

The net effect of this error is analogous to injecting noise to the modulator input which 

results in SNR and dynamic range reduction. The effect of clock jitter in CT-∆Σ 

modulators has been extensively analyzed in the literature [30-33], where earlier 

publications [30-31] unanimously concluded the random variation of the feedback pulse 

width is the major source of the jitter noise. The work in [33] showed that the jitter-

induced noise in modulators with NRZ feedback is predominantly determined by the 

out-of-band behavior of the NTF, thus more aggressive noise shaping automatically 

exacerbates the jitter sensitivity. In addition to the NTF contribution, a more recent 

analysis [34] attributed part of the jitter noise to the input signal parameters.  

 To gain an intuitive understanding of the jitter noise, consider a feedback DAC 

with current mode output IFBK using RZ and NRZ waveforms as shown in Figure 

3.15(a) and (b) respectively. Every cycle the DAC transfers a net charge to the integrat- 
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 ing capacitor which ideally is equal to the area under the feedback waveform, or 

 [ ] [ ]FBK sQ n I n T= ⋅  (3.23) 

However, in presence of jitter, the transferred charge will deviate from its ideal value by  

 
( [ ] [ 1]) [ ]; NRZ DAC

[ ]
[ ] ( [ ] [ ]);      RZ  DAC

FBK FBK

FBK r f

I n I n t n
Q n

I n t n t n

 − − ⋅ ∆∆ ≅  ⋅ ∆ + ∆
 (3.24) 

In the above, ∆t[n] denotes the NRZ timing error while ∆tr[n] and ∆tf[n] respectively, 

are the rising and falling edge timing errors of the RZ pulse. Equation (3.24) directly 

points to some advantages of using multibit NRZ DACs for jitter noise reduction. These 

benefits can be summarized as, less switching activity and smaller step size. The timing 

errors of the NRZ waveform happen only once at every cycle, whereas in the RZ case 

the jitter affects both edges of the clock, as shown separately by ∆tr and ∆tf in Figure 

3.15. On the other hand the step size of the NRZ feedback is the difference between two 

consecutive outputs which tends to remain small owing to the inherent oversampling of 

∆Σ modulators. In contrast the RZ step directly follows the modulator output at every 

cycle hence according to (3.24) larger error charge will be incurred. 

In order to evaluate the effect of jitter in the multibit NRZ ∆Σ modulators, one 

can use the so called “jitter error sequence” [32] which essentially is the error charge in 

(24) normalized to the sampling period 

 
[ ]

[ ] ( [ ] [ 1]) ( )
s

t n
n y n y n

T
ε

∆
= − − ⋅  (3.25) 

In the above, y[n-1] and y[n] are two consecutive outputs of the modulator and 

∆t[n] is the timing jitter corresponding to a Gaussian random process with zero mean 

and standard deviation σ∆t . Using (3.25), the in-band noise power due to jitter can be  
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expressed as 

 { }
22
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( [ ] [ 1])
s

j

t T
S E y n y n

OSR OSR
ε

σσ ∆
= = − − ⋅  (3.26) 

In the above (∆t/Ts) is the normalized clock jitter and OSR is the oversampling ratio. 

Neglecting the input signal contribution to the output step size y[n]-y[n-1], the in-band 

jitter noise power is derived as [33] 
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In the above equation VFS is the modulator full-scale range and N is the quantizer 

resolution in bits. The term under the integral in (3.27) is the product of the first-order 

high-pass filter 1-z
-1

 and modulator’s NTF, which suggests that the jitter noise is mainly 

influenced by the NTF response at high-frequencies. In other words a more aggressive 

noise-shaping with larger NTF out-of-band gain will be more sensitive to clock jitter 

due to larger steps at its output. Equation (3.25) suggests a quick way of simulating the 

effect of clock jitter in CT ∆Σ modulators by simply generating the error term ε[n] in 

(3.25) and adding it to the feedback path of the modulator. 

  Figure 3.16 shows such behavioral model [34] which can be easily implemented 

in SIMULINK environment of MATLAB. In Figure 3.16 the sequence ( )[ ] st n T∆  is a 

discrete Gaussian random variable with zero mean and standard deviation equal to the 

normalized jitter. Figure 3.17 shows the output spectrum of a third-order ∆Σ modulator 

subjected to 1% and 0.1% jitter (normalized to Ts).  The total in-band noise power, 

including the -89 dBFS quantization noise, is -66 dBFS and -84.3 dBFS for 1% and 0.1 

%  jitter, respectively. From these numbers the jitter-induced noise power is found as 
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Figure 3.16: A behavioral model for simulating the jitter. 
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Figure 3.17: Output spectrum of a 3rd-order ∆Σ modulator affected by jitter. 

 

 

-66 dBFS and -86 dBFS for 1% and 0.1% jitter, respectively. 

We compared two commonly used DAC pulses, RZ and NRZ, and mentioned 

the benefits of using NRZ feedback over RZ from jitter sensitivity perspective.  In an 

alternative method, the NRZ DAC is replaced by a switched-capacitor DAC [14]-[18]. 

In contrast to the rectangular current pulse of an NRZ DAC, a switched capacitor 
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produces a current spike that vanishes in a fraction of a sampling period. As a result, the 

clock jitter has nearly no influence on the amount of transported charge from the 

switched-capacitor DAC into the integrator. To handle the current spikes produced by 

the feedback DAC, the bandwidth of the first integrator’s amplifier has to be increased 

to a bandwidth comparable to that of a switched-capacitors ∆Σ modulator. This 

increases the power consumption of the first integrator. 

Another simple and efficient method to relax the clock jitter is to employ a low-

pass finite impulse response (FIR) DAC in the feedback path [35]. With an N tap FIR, 

the quantizer output pulse is spread over N samples and jitter contribution is 

subsequently averaged over N periods. For an efficient hardware implementation of the 

analog FIR, the modulator is usually constrained to use single-bit quantization [36-37]. 

This limitation makes it challenging to implement higher-order and aggressive noise-

shaping in FIR based ∆Σ modulators. 

 

3.8 Summary 

This chapter presents the behavioral models used to simulate the effect of 

various non-idealities encountered in CT-∆Σ-modulators, such as, amplifier limited 

gain-bandwidth product, amplifier input stage nonlinearity, mismatch among the unit 

elements of the feedback DAC, the comparator offset of a Flash quantizer, element 

mismatch of a SAR quantizer, and clock jitter. The derived equations and modeling 

techniques are employed throughout this work in the design and implementation of a 5-

bit SAR based CT-∆Σ modulator a third-order dual-feedback CT-∆Σ modulator as 

explained in the following chapters. 
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CHAPTER 4 

SAR BASED CT DELTA-SIGMA ARCHITECTURE 

 Wireless applications have steadily headed towards higher data rates in recent 

years while portability has placed a stringent requirement on power consumption. One 

impact of this trend on receiver design has been the increasing need for low-power 

wideband A/D converters. Continuous-time Delta-Sigma (CT-∆Σ) modulators have 

been gaining popularity due to their potential to fulfill these conflicting requirements  

[1-2]. Owing to the availability of efficient DEM techniques and the ease of 

implementation of current-mode DACs, single-loop multibit structures have become the 

architecture of choice in wideband applications [38-45]. Multibit quantization allows for 

more aggressive noise shaping in higher-order systems and smaller oversampling ratios 

(OSR). For a given signal bandwidth, a lower OSR translates into a lower clock 

frequency and thus, results in power savings in both analog and digital blocks. 

Furthermore, multibit quantization combined with NRZ feedback pulsing significantly 

relaxes the clock jitter requirement [40-45]. For each additional quantizer bit the 

feedback step size is halved, which in effect doubles the amount of tolerable jitter. 

However, each extra bit calls for doubling the number of comparators in a flash 

quantizer. This causes an exponential growth of power and area. The significance of the 

quantizer in CT-∆Σ-modulators becomes even more apparent when one takes note of 

the lower power and area of continuous-time loop filters compared with their switched-

capacitor (SC) counterparts. In a CT-∆Σ-modulator, the multibit quantizer makes up a 

larger portion of the total power and area [46]. Therefore, improving the quantizer can 

provide for substantial overall improvement in a CT-∆Σ-modulator. 
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Alternative quantization techniques in ∆Σ-modulators have recently started to 

emerge. The implementation in [47] uses a flash-like tracking A/D with reduced number 

of comparators and adaptive reference levels. This technique sets severe constraints on 

the signal bandwidth to make the tracking possible. The SC-modulator in [48] 

incorporates a two-step flash ADC where quantization time is confined within one half 

of the clock period.  

This chapter will present a CT-∆Σ-modulator architecture based on Successive-

Approximations (SAR) quantizer. Also the design and implementation of a first-order 

modulator based on a 5-bit SAR with delay compensation will be presented. The 

modulator achieves 62 dB of dynamic-range over the WCDMA bandwidth of 1.92 MHz 

when clocked at 184.32 MHz. The use of SAR-quantizer stems from the observation 

that SAR-quantizers are generally quite efficient in terms of power and area. The SAR-

quantizer is the only block in the modulator which operates at a higher frequency to 

achieve a conversion time of less than one sampling period. The quantizer delay is 

compensated at the system level by including an additional feedback path in the 

modulator structure. The non-linearity of the feedback digital-to-analog converter 

(DAC) is reduced using a partial-data-weighted-averaging (P-DWA) technique that 

takes advantage of the successive approximation algorithm to circumvent the excess 

loop delay issue caused by the non-zero propagation time of digital blocks. Although the 

proposed architecture has been implemented as a first-order modulator for proof of 

concept, it can equally be used in higher-order systems with aggressive noise shaping. 

The following sections will first provide an overview of the architecture design. Then 

the implementation details of the first-order 5-bit modulator will be presented.   
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Figure 4.1: Power-speed trade-offs in major A/D converter architectures. 

 

 

Finally, test and measurement results will be shown. 

 

4.1 Architecture Overview 

The comparative study of various ADC architectures in [49] indicates that 

successive approximation is generally the most energy-efficient A/D conversion 

technique. In other words, SAR-quantizers provide the lowest power-to-speed ratio 

among A/D Converters. Figure 4.1 shows power and speed trade-offs for three major 

A/D architectures. Compared with an N-bit flash quantizer, a SAR-quantizer needs to be 

clocked N times faster to achieve similar throughput. This results in an N- fold power 

consumption increase for a single comparator. Assuming that the quantizer power is 

proportional to the comparator power and the number of comparators, the ratio between  
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Figure 4.2: Proposed SAR based CT-∆Σ modulator architecture. 

 

 

the SAR-quantizer power and the Flash quantizer power will be N/2
N
. This means that 

for the same throughput, the SAR-quantizer consumes less power. This ratio becomes 

more significant as the number of bits increases.  The proposed architecture, shown in 

Figure 4.2, is based on this observation. Since successive approximation A/D 

conversion causes a delay proportional to the number of bits and the clock frequency, 

the quantizer needs to be clocked at a higher frequency to keep the conversion time less 

than one sampling period. This amount of delay can be compensated at the system level 

by means of an extra DAC which is implemented using the switched-capacitor 

technique. The main DAC is current-mode and uses the Non-Return-to-Zero (NRZ) 

pulse scheme for better protection against clock jitter. Partial-DWA is applied only to 

the main DAC to improve its linearity without causing additional loop delay. 
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Figure 4.3: (a) First-Order CT prototype ∆Σ modulator with quantizer delay 

compensation. (b) DT equivalent after discretization. 

 

 

 

4.1.1 SAR Latency Compensation 

Excess loop delay can cause serious degradation in the performance of CT-

∆Σ-modulators [20]. Flash quantization along with delay compensation is commonly 

used in CT-∆Σ modulators to overcome the excess loop delay problem caused by the 

finite speed of the quantizer [40-45]. An N-bit SAR-quantizer clocked N times faster 

than the sampling frequency still exhibits a latency of one full sampling period that 

can be compensated at the system level. The principal approach to delay 

compensation is to introduce an additional path into the modulator feedback loop 

[21]. This technique makes it possible to synthesize the desired Noise-Transfer-

Function (NTF) when the total loop delay remains within one sampling period. In the 

case of the first-order system in Figure 4.3(a), the loop transfer function of the system 

can be written as: 

 1( ) sT

d

k
H s k e

sT

− = + 
 

 (4.1) 
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In the above equation, kd is the gain of the delay compensation path and the full-cycle 

delay ( 1−− = ze sT ) is allocated to the SAR-quantizer. By discretizing the above transfer 

function [50] and equating the result with the desired discrete-time loop 

filter 1 1( ) /(1 )dH z z z− −= − , the modulator coefficients are obtained as 11 =k  and 

1dk = . This delay compensation technique can be applied to any higher-order system 

to accommodate the full-cycle conversion time required for the SAR-quantizer. 

In the CT-∆Σ modulator shown in Figure 4.3(a) an outer loop TF H’c(s) from 

DAC input U1 to the CT filter output Y can be identified: 

 '

1 ( ) 0

( )
( )

( )c

x t

Y s
H s

U s =
=  (4.2) 

Design of SAR-based CT-∆Σ modulator involves finding the delay compensation gain 

kd and the CT transfer function H’c(s) such that after discretization it will match a DT 

transfer function H’d(z) that satisfies the following equation: 

 ( )1 '( ) ( )d d dH z z k H z−= ⋅ +  (4.3) 

where Hd(z) is the ideal DT loop TF related to the target NTF as: 

 
1

( ) 1
( )dH z

NTF z
= −  (4.4) 

In an N-th order modulator, the DT transfer functions Hd(z) and H’d(z) can be 

expressed in general form as: 
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 (4.5) 

Using (4.3) it can be shown that (see Appendix B) Hd(z) and H’d(z) have the same 
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denominators, hence the same ia coefficients. The gain kd and numerator coefficients 

of H’d(z) can be obtained from the coefficients of Hd(z) using 

 
1

'
1 1 0... 1

d N

j j j N j N

k b

b b a b

−

− − = −

= = −
 (4.6) 

In (4.6) for j=0 the bj-1 is zero (i.e. b-1=0). The final design step involves discretizing 

H’c(s) defined in (4.2), and equating it with H’d(z).  For example in the first order 

modulator shown in Figure 4.3, the required NTF is NTF(z) =1-z
-1

 which leads to the 

DT loop transfer function of Hd(z)=1/(z-1). Using (4.6), the delay compensation 

feedback kd and H
’
d(z) are identified as kd=b0=1 and H

’
d(z)=1/(z-1) . Using impulse-

invariant transformation and assuming NRZ DAC the CT equivalent of the H
’
d(z) is 

H
’
c(s)= 1/sT, where T is the sampling period. In this example H

’
c(s) is the ideal CT 

integrator. Appendix-B provides another design example based on the second-order 

NTF.  

 

4.1.2 Partial Data Weighted Averaging 

Data-Weighted-Averaging (DWA) is a simple, yet effective dynamic element 

matching technique that provides a first-order shaping of the DAC element mismatch 

[13]. However, the delay of the DWA blocks can add to the total loop-delay budget 

and thereby, degrade the modulator performance. Thus, we have opted for a Partial-

DWA (P-DWA) technique in which DEM is performed using only the 4 MSB s of the 

codeword generated by the SAR quantizer. Since the SAR-quantizer sequentially 

generates the output bits from the MSB to the LSB, the DEM operation can be 

performed without additional delay by skipping the LSB bit. In this way, DEM 
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concurrently proceeds as the SAR-quantizer extracts the LSB. Figure 4.4(a) compares 

the SNDR versus DAC element mismatch in a 1
st
-order-5-bit ∆Σ-modulator with 

OSR=48 for three different cases of no DEM, with DWA, and with P-DWA. 

Compared with full DWA, partial DWA results in an SNDR degradation of less than 

3 dB assuming an element mismatch of σ = 2
-6

 = 1.5%. This small degradation 

warrants the use of P-DWA which allows us to avoid the excess loop delay problem 

and also simplify the DWA circuitry. Figure 4.4(b) shows the output spectrum of the 

modulator for two different cases with P-DWA and no DEM. The P-DWA algorithm 

still provides 21dB improvement in SNDR. For further improvement the device 

matching levels could be increased by a coarse calibration. Figure 4.5(a) and (b) show 

similar results for a 5-th order modulator with OSR=8. The difference between P-

DWA and full-DWA shows a similar trend as the 1
st
-order case, however due to the 

lower effectiveness of DEM at low over-sampling ratios, both techniques demand 

higher initial matching to achieve full noise-shaping performance of the modulator. 
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Figure 4.4:  (a) SNDR of a 1

st
-order ∆Σ-modulator at OSR=48 versus element 

mismatch plotted for DWA, P-DWA, and no DEM ; (b) Output spectrum of the 

modulator with and without P-DWA. 
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Figure 4.5: (a) SNDR of a 5th-order ∆Σ-modulator at OSR=8 versus element mismatch 

plotted for DWA, P-DWA, and no DEM ; (b) Output spectrum of the modulator with 

and without P-DWA. 
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4.1.3 SAR Quantizer Clock and Timing 

A conventional N-bit SAR requires N clock cycles to quantize its input signal. In 

order to keep the SAR latency less than the modulator sampling period an N times faster 

clock will be required. In radio applications, such a high frequency clock is usually 

available on chip; hence there will be no need for external clock sources. Figure 4.6 

shows a ring counter-based 6-phase clock generator (i.e. N=6) for a SAR quantizer. In 

this case the input clock is 6.FS where FS is the modulator sampling frequency. The 

modulator clock at FS can be obtained by combining the first three outputs of the ring 

counter (i.e. Phi1-Phi3). Therefore there will be no need for a separate low-frequency 

clock input. The extra jitter generated by the ring counter and all the logic gates in the 

FS path need to be accounted for in order to meet the modulator jitter specification. 

 

 

 

Figure 4.6:  SAR quantizer multi-phase clock generation using a ring-counter. 
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In stand alone ADC applications, due to the high cost of discrete low-jitter clock 

generators, providing an off-chip high-frequency clock can be expensive. However the 

modulator clock at FS can be used with an on-chip frequency multiplier to generate the 

required SAR clock with frequency N.Fs .  Figure 4.7(a) and (b) show two different 

scenarios based on PLL and DLL respectively. In the PLL based method the divide-by-

N in the feedback path ensures a frequency N.Fs at the output of the VCO. In the DLL 

based approach, the negative feedback in the DLL loop tunes an N-tap delay line such 

that one sampling period of the input clock is divided into N equally spaced phases. The 

edge combiner logic is then applied to the delay line taps to generate the N.Fs 

frequency.  
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Figure 4.7:  On-chip frequency multipliers based on (a) PLL and (b) DLL loops. 
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Alternatively an asynchronous SAR quantizer can be used that does not require a 

fast clock and eliminates the need for a PLL or DLL. In this case the asynchronous logic 

used within the SAR will automatically generate similar N-phase timing signals but 

with variable pulse widths. The main challenge of using asynchronous SAR lies in its 

interfacing to the DWA block which has to work synchronously with the modulator 

loop. However replacing DEM with analog calibration can simplify the timing 

requirements and allow for the use of asynchronous SAR which has a better potential 

for high-speed [49]. 

 

4.2 A First-Order 5-Bit SAR Based CT-∆Σ∆Σ∆Σ∆Σ Modulator 

The block diagram of the first-order CT-∆Σ-modulator based on a 5-bit delay 

compensating SAR quantizer is shown in Figure 4.8. The modulator is intended for a 

WCDMA receiver application with 1.92 MHz signal bandwidth and 60dB dynamic 

range. The first order NTF of the modulator at OSR of 48 provides sufficient 

quantization noise attenuation with 10dB extra headroom compared to the target 

dynamic range. The required 184.32 MHz modulator sampling clock is provided by an 

external clock source and after on chip buffering is applied to the main 5-bit DAC. The 

SAR quantizer uses a 6-phase clock for resolving 5-bits. The 5
th

 and 6
th

 timing phases 

are dedicated to mismatch shaping of the main DAC using Partial-DWA.  The 1.1GHz 

clock of the SAR-quantizer is generated internally from the external clock using an on-

chip DLL. The decision to use on-chip frequency multiplier was merely due to practical 

limitations such as test board design issues. In transceiver applications, a synchronous 

high-frequency clock is usually available and there is no need for clock multiplication. 
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Figure 4.8:  Architecture of the first-order 5-bit SAR-CT-∆Σ modulator. 

 

The required reference voltage for the SAR-quantizer is provided by an external source 

which is scaled and buffered on the chip prior to being routed to the quantizer. The same 

reference voltage is used to bias the current-mode DAC to ensure that the DAC gain and 

the SAR-quantizer gain track each other. Also two open-loop buffers are attached to the 

integrator outputs to prevent the potential back-propagation of kickback noise from the 

switched-capacitor SAR-quantizer towards the integrator. These open loop buffers may 

not be necessary in a higher-order modulator due to improved noise shaping. 

 

4.2.1 Integrator and Amplifier Design 

The integrator is implemented using the active-RC technique for high linearity. 

It also provides a virtual ground to sink the output of the current-mode DAC. Behavioral 

simulations showed that the system could tolerate up to 30% integrator gain variation 

without causing more than 4 dB SQNR degradation. Since foundry data indicated an 

RC-product variation of up to 30%, the integrating capacitors are trimmed to keep the 
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integrator gain within the acceptable range.  A capacitor bank, controlled by an external 

2-bit code, is used to keep the integrator gain within 7.5%. This limits the maximum 

loss in SQNR to less than 1 dB. 

The total input-referred noise power of the modulator is derived as 

 
2

ˆ 28
8 (1 ) ln( )

3 3

f fin th B
N B in

GST m ox u

KV f
P KTf R

V g C WL f

ηη 
≈ + + + 

 
 (4.7) 

In the above equation ˆ
inV is single-ended peak amplitude of the input signal, VGST gate 

the overdrive of the DAC current source, fB the signal bandwidth,  fu  the lower 

integration bound for flicker noise, gm the amplifier input transconductance, W and L 

the input device sizes and Kf the flicker noise coefficient. Also ηth and ηf are thermal 

noise and flicker noise factors of the opamp, respectively. The terms inside the brackets 

represent thermal noise contributions of the input resistors, DAC, and the opamp. We 

assume a current-mode DAC as shown in Figure 4.7(a) that has N-type switched current 

sources and P-type devices on top providing the common-mode current. The DAC 

current noise was minimized by maximizing the gate overdrive voltage of the current 

sources. The amplifier is the major source of flicker noise. Hence a PMOS input 

differential pair along with source degeneration for NMOS devices is used to minimize 

the amplifier flicker noise. The entire integrator and DAC were designed for 68dB 

signal-to-noise-ratio. An important challenge faced in this design is the small amplitude 

of the input signal which is 150 mV-peak single-ended. The small input amplitude calls 

for a small input resistor (Rin) to meet the noise requirement. A small input resistance, 

however, adversely affects the integrator linearity. Assuming weakly nonlinear fully  
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Figure 4.9:  Schematic of the fully-differential amplifier with output buffers. 

 

 

differential amplifier the harmonic distortion due to the opamp is [51] 

 
� 2
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3 1

64
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 ≈ ⋅ +   ⋅ ⋅ ⋅
 (4.8) 

In the above equation kin and kdac respectively are the input and feedback gains of the 

modulator which are equal in this design. The Rin and gm values are fixed by noise 

requirements according to (4.7) hence the integrator linearity can be improved only by 

increasing the amplifier bias current, ID. 

A two-stage amplifier was selected for its larger output swing and better linearity 

compared with a single-stage amplifier. The schematic of the amplifier is shown in 

Figure 4.9. The first stage of the amplifier uses a current-mirror with a ratio optimized 

for best trade-off between current drain, gain-bandwidth and phase margin. To achieve 

the maximum output swing, the output stage comprises of only two transistors. Instead 

the output of the first stage which has smaller voltage swing is cascoded to achieve high  
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Figure 4.10:  Amplitude and phase response of the designed amplifier. 

 

 

 

DC gain. 

Frequency compensation is done by means of a Miller capacitor and a series 

resistor to get rid of the right-hand plane zero. The op-amp achieves a DC gain of 74 dB 

and a unity gain-bandwidth of 240MHz with 72 degrees phase-margin under worst-case 

conditions. The AC simulation results in Figure 4.10 show the magnitude and phase 

response of the amplifier.  The buffers attached to the integrator outputs, as shown in 

Figure 4.s 8 and 9 are intended to drive the sample-and-hold (S&H) of the SAR and to 

isolate the integration capacitor from the switching noise of the SC-quantizer. Low-

threshold devices are used in these source-follower stages to minimize the resulting DC 

level shift. These buffers are placed outside the integrator loop so that their output pole 

does not affect the integrator loop stability. Also any noise and distortion caused by the 

buffers will be rejected in the signal band by modulator NTF. 
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4.2.2 The 5-bit SAR Quantizer 

The schematic of the 5-bit SAR quantizer with embedded delay compensation is 

shown in Figure 4.11(a). The actual circuit is fully-differential, but only a single-ended 

half-circuit is shown for the sake of simplicity. Two identical Switched-Capacitor DACs 

(SC-DACs) are implemented. One is part of the SAR-quantizer and the other one is 

employed for delay compensation. The timing diagram of the circuit is shown in Figure 

4.11(b). At the falling edge of Φ1, which corresponds to the rising edge of the 184.32 

MHz clock, the input signal is sampled by the SAR DAC. At the same time, the main 

current-mode DAC in the modulator feedback path is refreshed. The SAR logic uses a 

six-phase clock for timing and control. An on-chip DLL-based frequency multiplier 

generates the six-phase timing control signals as well as the 1.1 GHz clock needed for 

the comparator from the 184.32 MHz input clock.  

The 5-bit SC-DAC, depicted in Figure 4.12(a), is a hybrid resistive-capacitive 

structure [52] where 2 bits are generated by a resistor string and 3 bits by a capacitive 

network. This strategy requires only 8 unit capacitors and provides a 4X reduction in the 

total capacitance compared with a purely switched-capacitor implementation. Since the 

DAC parasitic capacitance appears as the load of the source-follower driving the 

quantizer, this hybrid structure helps with reducing the power consumption of the source 

follower. The 3-bit MSB section is thermometer-decoded to reduce possible transition 

glitches and improve linearity. The switch control logic for one slice is shown in Figure 

4.12(b). This circuit arrangement prevents a short circuit between the input and 

reference signals by adopting a non-overlapping break-before-make switching scheme. 

Moreover, to perform bottom-plate sampling switch M5 is guaranteed to turn-  
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Figure 4.11:  (a) Schematic of the delay-compensated 5-bit SAR; (b) Timing diagram. 

 

 

 

off before input switches M1 and M2. The only control signals are Φ1 and the data lines 

coming from the MSB decoder (see Figure 4.13(a)). The SAR logic is built into the 3-

bit binary-to-thermometer decoder by combining the control pulses Φ2-Φ4 through the 

NOR gates placed at the input. Thus, unknown bits can be set to logic ‘1’ during the 

detection phase. The 2-bit LSB section of the DAC uses binary decoding to apply 1 of 

the 3 additional reference levels to the last unit capacitor (CU8). Therefore, the last slice 

includes three additional CMOS switches, as conceptually illustrated in Figure 4.12(a).  
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Figure 4.12:  (a) Structure of the Split 3bit-2bit SC-DAC, (b) One slice of the MSB 

section (Cu1 – Cu7) showing the non-overlap switching logic.  

 

 

 

The required reference levels are generated by a 4-element resistor string which 

can be made low-power because of low capacitive load and relaxed 2-bit settling 

requirements. As shown in Figure 4.13(b), the 2-bit binary 1-of-4 decoder is modified in 

the same way as the MSB decoder to perform the SAR operations during Φ5-Φ6. 

Referring to Figure 4.11 and 4.12(a) the voltage generated by SC-DACs can be 

related to their input data as: 

3 5
3
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Figure 4.13:  (a) 3-bit MSB binary to thermometer SAR-Decoder, (b) 2-bit LSB binary 

to 1-of-4 SAR-Decoder. 

 

 

The 5-bit binary code 4 0d ...d [n-1] of the previous sample is applied to DAC2 (delay- 

DAC in Figure 4.11). The current binary code 4 0d ...d [n], under the SAR control, is 

applied to DAC1 (SAR-DAC in Figure 4.11). Since DAC2 does not use the Φ2-Φ6 

control signals, the corresponding inputs in its MSB and LSB decoders (see Figure 4.13) 

are tied to ground. The associated VDAC2 voltage will be produced by the falling edge of 

Φ1. During Φ2-Φ6, while switch M5 is off, charge sharing between the two DACs will 

generate a voltage at the comparator input as 

[ ]1 2
2 1

( )8 ( 0)8 8
( )

16 16 16

DAC IN u DAC u u
i IN DAC DAC

u p u p u p

V V C V C C
V V V V

C C C C C C

− −
∆ = + = − − −

+ + +
 (4.11) 

The above equation demonstrates the summing operation at the quantizer input through 

charge sharing. This technique obviates the need for an active adder which would have 

required an additional amplifier. The price paid for this benefit is extra attenuation by a  
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Figure 4.14:  (a) 3-bit MSB binary to thermometer SAR-Decoder, (b) 2-bit LSB binary 

to 1-of-4 SAR-Decoder. 

 

 

factor of 2 which necessitates a comparator pre-amplifier with higher DC gain. 

Mismatch between capacitors used in the SAR quantizer affects mean and 

standard deviation of the modulator SNDR. Figure 4.14 compares the Monte-Carlo 

simulation results when the unit capacitors in both switched-capacitor DAC s have 4-bit 

or 5-bit matching accuracy. It can be seen that 5-bit matching is required to keep the 

INL well below one LSB and ensure an SNDR of better than 67dB. Using the foundry 

provided data, the vertical metal-metal capacitors of the SC-DACs were sized to achieve 

a 5-bit matching accuracy (i.e. mismatch σ = 2
-5

).  

The comparator and its building blocks are shown in Figure 4.15. It comprises a 

pre-amp and a current-multiplexed latch. The comparator is clocked at 1.1 GHz and 
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Figure 4.15:  (a) Block diagram of the comparator employing time-multiplexed latches.  

(b) Schematic of the preamp. (c) Schematic of the latch. 

 

 

resolves a 3.75 mV error voltage in 900 ps. This level of sensitivity is equivalent to 1/4
th

 

of one LSB of the SAR after taking into account the attenuation of the SC-network. 

During the first half of each phase, when the SAR-DAC is not fully settled, a reset 

switch shorts the pre-amp outputs together to prevent the output nodes from moving in 

the wrong direction. The latch at the comparator back-end consists of five multiplexed 

regenerative stages with a shared transconductor. Current-mode multiplexing is 



 96 

performed for high-speed operation. The transconductor stage reduces the kickback 

noise and converts the pre-amp input voltage into a current. Multiplexing also reduces 

the capacitive load of the pre-amp and thereby, its static power. Dynamic power is also 

reduced because the individual latches have a smaller fan-out and only one latch 

remains active during each phase. The penalty is a variable input-referred offset which 

can cause nonlinearity if it becomes comparable to the LSB. Simulations indicated a 

standard deviation of 60 mV for the latch offset. This calls for a minimum pre-amp DC 

gain of 6.4 to mitigate the problem. The actual pre-amp was designed with a worst-case 

gain of 10 which provides sufficient margin for safe operation. The combined power 

consumption of the 5-bit SA-quantizer and the delay compensation DAC is 1.3 mW 

from a 1.2 V supply when clocked at 1.1 GHz. 

 

4.2.3 Current Mode DAC 

The modulator employs an NRZ DAC in its main feedback path. Choice of 

current-mode design for this DAC simplifies its interfacing to the first integrator, where 

the amplifier summing nodes provide a low-swing and low-impedance sink for the DAC 

outputs. Figure 4.16(a) shows the structure of the 5-bit current mode DAC. The current 

sources are grouped as 15 pairs controlled by the P-DWA, and a single cell controlled 

by the LSB bit. To minimize the effect of gradient-induced errors, the MSB pairs are 

laid out in common-centroid form and the LSB cell is placed at the geometrical center 

of the layout as shown in Figure 4.16(b). Separate supply voltages are used for the input 

buffers and the switch drivers to avoid trigger time modulation due to supply noise. 
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Figure 4.16:  (a) Structure of the 5-bit current mode DAC, (b) Common-centroid layout 

of the current cells to reduce linear gradient errors. 

 

 

Figure 4.17 depicts a current cell and its switch driver. A cascode current source 

is used to increase the DAC output resistance and also to shield the large drain 

capacitance of the current source devices from the opamp inputs.  
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Figure 4.17:  (a) Structure of the 5-bit current mode DAC, (b) Common-centroid layout 

of the current cells to reduce linear gradient errors. 

 

 

The current source devices (M1) are sized for 6-bit matching (σ = 2
-6

) using the 

formula in [53] while taking its noise current into account. A single cascode current 

mirror is used to bias all current cells. The bias lines are bypassed by two large 

capacitors to protect them against noise coupling. The DAC bias current is generated 

from the reference voltage of the quantizer by means of a difference amplifier and a 

replica of the input resistor (see Figure 4.17). The negative feedback loop forces the unit 

current to be equal to Iu=VREF / 32Rin. This guarantees that the quantizer and DAC gains 

will track each other. 

The switch driver generates a high-side crossing pulse for the NMOS current 

switches to prevent large current glitches.  It also ensures an NRZ waveform generation 

by retaining the data until the next clock edge. The current switch is a pair of minimum-

size NMOS transistors (M4, M5) operating in the triode region when they are turned on. 

An identical pair (M6, M7) with opposite connections is added for charge injection 
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cancellation. Since the nodes shown by letter X on both pairs (source nodes) track the 

amplifier’s virtual ground voltage, the charge injected by the dummy switches will 

closely match the charge injected by the main switches. Charge cancellation will thus be 

limited by random mismatch between the two pairs. 

 

 

4.2.4 5-bit Partial-DWA Implementation 

The architecture design of an N-bit P-DWA for use with N-bit SAR-quantizer is 

shown in Figure 4.18(a). Since the output of the SAR-quantizer is binary, a binary-to-

thermometer decoder must be placed in the feedback path of the ∆Σ-modulator. The 

thermometer output is then applied to a barrel shifter for dynamic element matching. 

The pointer to the barrel shifter comes from a digital integrator implemented by a 

modulo-adder (2
N-1

-1) and N-1 bit register (see Figure 4.18(a)). The implemented 5-bit 

P-DWA uses a modulo-15 adder and a 4-bit register in its integrator. Also a 4x4 matrix 

shifter using dynamic logic techniques has been designed for fast response and low-

power consumption. The circuit implementation of the barrel-shifter is shown in Figure 

4.18(b). In order to keep the area small only a single transistor NMOS device is used as 

the matrix switch. When Φ1 is low a pre-charge is applied to the rows, which sets all 

bit-lines to logic “1”. The level-active latches make sure the outputs do not change their 

states when Φ1 is low. During Φ1’s high state, the Di[15:0] inputs are evaluated, which 

depending on the input level and the shift pointer value, can discharge the 

corresponding output rows to logic “0”. Since the SAR output is latched every cycle, it 

is ensured that during the evaluation phase, the inputs will show no transition. Each 

barrel-shifter output is used to control two unit elements of the DAC. 
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Figure 4.18:  (a) Hardware realization of P-DWA for N-bit quantization; (b) Circuit 

design of a 15x15 matrix shifter (c) P-DWA operation for a 4-bit quantizer case. 

 

 

The barrel shifter usually dominates the total power and area of a dynamic-

element matching block. One benefit of using P-DWA algorithm is that skipping the 

LSB shrinks the area and power of the digital hardware by nearly a factor of 4. 

Figure 4.18(c) shows the operation of the P-DWA block by way of example. In 

the depicted 4-bit case, three MSBs are sent through the input decoder and barrel shifter 

to the output to select 7 element pairs, laid out symmetrically around a central LSB unit-

element which is directly controlled by the LSB bit. The pairs are rotated by the barrel 

shifter according to a pointer received from the modulo-accumulator. The rotation 

ensures that all pairs are used for an equal number of times so that the random  
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Figure 4.19:  Block diagram and timing of the Digital-DLL. 

 

 

mismatch error is averaged out. The circuit implementation of the 5-bit P-DWA consists 

of a 4-bit binary-to-thermometer decoder, a 15x15 matrix shifter, a modulo-15 adder, a 

4-bit binary decoder, and a 4-bit register for the shift pointer. The pointer register gets 

updated at the rising edge of Φ6 to ensure that matrix shifter does not see any activity on 

its select inputs when it is handling the shift operation during Φ1 .  

 

4.2.5 Digital DLL  

The SAR-quantizer needs a 1.1 GHz clock for its comparator and a six-phase 

clock for control and timing. A Digital-DLL similar to [54] was selected for on-chip 

generation of the required clocks. The structure and timing diagram of the DLL is 

shown in Figure 4.19. It includes a D-FF as phase detector and a 6-bit up/down counter  
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Figure 4.20:  (a) Fully-differential variable delay buffer; (b) Gate-level design of the 

edge combiner. 

 

 

as loop filter. The 6-bit current-mode DAC generates a bias current for a fully-

differential delay element whose delay is inversely proportional to the DAC current. 

The delay element is depicted in Figure 4.20(a). The current source devices M5A-

B charge the MOS capacitors by a copy of the DAC current. When one side is charging, 

the opposite side is reset by the NMOS transistor M1. When the capacitor voltage 

reaches the trigger point of the inverter formed by M2-M6, the corresponding output 

drops to ‘0’ and the opposite output is simultaneously forced to ‘1’ by the cross-coupled 

PMOS devices M8A-B. Since the rising edge of one side coincides with the falling edge 

of the other side, there will be no change in the clock duty-cycle caused by unequal 
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PMOS/NMOS rise and fall times. Even and equal duty cycles for all taps of the delay 

line feeding the frequency multiplier is necessary to achieve 50% duty cycle at the 

output. Gate-level design of the edge combiner generating the 6-phase clock along with 

the frequency multiplier producing the 1.1 GHz clock is shown in Figure 4.20(b). A 

constant duty-cycle for the 1.1GHz clock requires the propagation delay of the multi-

input NAND gates for all the inputs to be identical. This is shown for the 3-input 

NAND gate in the gray box in Figure 4.20(b). The same requirement needs to be met for 

the 2-input NAND gates as well. 

 

4.2.6 Test and Measurement Results 

The microphotograph of the chip fabricated in a 130 nm CMOS process is 

shown in Figure 4.21. The chip includes a ∆Σ-modulator, a DLL, a reference buffer, and 

LVDS I/O drivers. All empty areas were filled with de-coupling capacitors. The active 

area including the ∆Σ−modulator and its peripherals is 600 µm x 600 µm. The delay-

compensated SA-quantizer occupies 140 µm x 280 µm. The total chip area is 1.1 mm x 

1.1 mm. The IC is encapsulated in a QFN 32pin plastic package. All pads have full ESD 

protection. Separate supply and ground pins are used for analog, digital and I/O. 

Dedicated bias pins are assigned to the ∆Σ− modulator, DLL and LVDS I/O drivers.  

The block diagram of the test setup is shown in Figure 4.22. For all 

measurements, a 184.32 MHz sine-wave with 0.6V DC offset served as the main clock. 

The clock pin is terminated by a 50 ohm on-chip resistor. A cascade of three CMOS 

inverters converts the sine-wave into a square waveform. A single-ended 208 KHz sine-  
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Figure 4.21:  Die microphotograph of the 1
st
-order SAR based CT-∆Σ.  

 

 

 

wave filtered by a 6
th

-order Butterworth passive bandpass filter was used as the signal 

source. the sine-wave into a square waveform. A single-ended 208 KHz sine-wave 

filtered by a 6
th

-order Butterworth passive bandpass filter was used as the signal source. 

Single-ended to differential conversion was performed with a discrete differential op-

amp mounted on the test board. The differential LVDS outputs of the chip were 

converted to 3.3 V CMOS on the test board before being probed by the logic analyzer. 

The measured in-band-noise power in the idle mode with inactive P-DWA was -61 

dBFS. Upon activating the P-DWA, the in-band noise dropped to -69 dBFS. Figure 4.23  
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Figure 4.22:  Measurement setup for the 1st-order SAR CT-∆Σ test chip.  

 

 

 

shows the output spectrum obtained from a 32K-point FFT for a -6 dBFS input. The 

strong even-order harmonics observed in the spectrum are related to the pseudo-

differential nature of the SC-DACs. Although even-order distortion had been predicted 

by circuit simulations, it was found to be larger in the measurements. Based on post-

fabrication simulations, two potential sources have been identified for this degradation. 

The first one is that the actual mismatch between the vertical metal capacitors, used in 

the SA-quantizer and also the delay compensation DAC, may have been larger than 

what was predicted by the model. The second source is unaccounted timing errors 

caused by the digital DLL. Figure 4.24 shows the SNR and SNDR versus the input 

amplitude relative to full-scale. A peak SNR of 65 dB is achieved at -3 dBFS input 

while a peak SNDR of 59 dB is obtained at -6 dBFS input. The modulator achieves 62 

dB dynamic range which is equivalent to about 10 effective-number-of-bits (ENOB) . 
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Figure 4.23:  Output spectrum of the modulator for a -6dBFS sine wave at 208 KHz. 
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Figure 4.24:  Measured SNR/SNDR characteristic of the 1
st
-order modulator.  
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Table 4.1: Performance Summary. 

 

Clock Frequency 184.32 MHz 

Signal Bandwidth 1.92 MHz 

Full Scale Range +/- 300 mV (differential) 

Peak SNDR 59 dB (at -6dBFS) 

Peak SNR 65 dB (at -3 dBFS) 

Overload Level -6 dBFS 

In-Band Noise  Power (Idle Mode) -69 dBFS 

Dynamic Range 62 dB = 10 ENOB 

Analog 2.1 mW 
Power Consumption 

Digital 1.0 mW 

Total = 3.1 mW 

(VDD = 1.2 V) 

Fabrication Process 130nm  1P8M  RF CMOS 

Chip Area (Excluding Pads) 600 µm× 600 µm  (0.36 mm
2
) 

FOM
*
 0.788  pJ/conversion 

* FOM=Power / (2
. 
BW

.
2

ENOB
) 

 

 The measured current consumptions are 1.75 mA for the analog and 2.5mA for 

the digital, including the DLL. Post-layout simulations indicate that the DLL’s current 

consumption is 1.67 mA. Hence, the modulator by itself draws 830 µA from the 1.2 V 

digital supply. Therefore, the modulator consumes 2.1 mW analog power and 1.0 mW 

digital power, amounting to 3.1 mW total power consumption. This represents a figure -

of-merit (FOM) of 0.788 pJ/conversion. The measurement results are summarized in 

Table 4.1. 
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4.3 Summary 

This chapter presented a CT-∆Σ-modulator architecture based on using delay 

compensated SAR quantization. Also the design and implementation of a first-order 

modulator with a 5-bit SAR was presented that uses on-chip frequency multiplier to 

generate the required high-frequency timing clock. The modulator achieves 62 dB 

dynamic range over 1.92 MHz signal bandwidth which is 6 dB less than the 68 dB 

simulated dynamic range. The difference was attributed to the extra mismatch among 

the vertical metal-metal capacitors of the delay compensating DAC and the SAR 

quantizer as well as the timing errors contributed by the DLL. The implemented 

modulator draws 3.1 mW power from a 1.2 V supply and occupies 0.36 mm
2
 of die 

area.  The implementation proves the feasibility of high-performance CT-∆Σ-

modulators based on high-speed SAR-quantizers. The use of SAR-quantizers with 

resolutions over 4 bits becomes particularly advantageous in higher-order modulators 

where finer quantization can be leveraged to design ∆Σ-modulators with more 

aggressive noise transfer functions. 
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CHAPTER 5 

ROBUST STF MODULATOR ARCHITECTURES 

Reconfigurable CT-∆Σ modulators for multi-mode receiver applications that 

demand higher levels of interference tolerance have recently received increasing 

attention [14], [55-57]. Switching between different modes in these A/D converters 

often demands complex and reconfigurable feedback D/A converters that tend to be 

bulky. As such, multi-bit CT-∆Σ-modulators are often implemented using the 

feedforward topology which uses a single feedback path. However a typical feedforward 

CT-∆Σ modulator shows an undesirable out-of-band peaking in the Signal-Transfer-

Function (STF) [41]. This drawback is particularly troublesome in wireless applications 

where, in the presence of strong out-of-band blockers, any peaking in STF translates 

into a reduction in dynamic range. Furthermore, feedforward CT-∆Σ modulators exhibit 

significantly lower anti-aliasing than feedback modulators. The solution proposed in 

[58] aims to tackle the STF peaking problem by means of a passive RC low-pass filter 

in the forward path and an active high-pass filter in the feedback path of the modulator. 

In addition to the need for an extra amplifier, this method trades the Noise Transfer 

Function (NTF) of the modulator versus its STF. In this chapter we will propose two 

new CT-∆Σ modulator topologies; one with dual feed-in and another with dual feedback 

that both allow for implementing a low-pass STF without constraining the NTF. 

In the following sections we will first show how a conventional feedforward 

modulator can be modified to avoid peaking in its STF. Then, we will compare the 

robustness of the proposed dual feed-in and the dual feedback structures versus the 

peaking-free feedforward modulator. Finally, we will show the design, implementation 
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and measurement results of a third-order, 4-bit dual-feedback modulator that achieves 

76 dB of dynamic range over 5 MHz signal bandwidth while providing 70 dB of anti-

aliasing and a peaking-free STF. 

 

5.1 STF Behavior in CT-∆Σ∆Σ∆Σ∆Σ 

Figures 5.1(a) and (b) respectively show the well known feedback and 

feedforward CT-∆Σ modulator architectures [8]. Third-order systems have been chosen 

merely as an example. In general, both topologies need N continuous-time integrators 

(i.e., N=3) for N-th order noise shaping while local resonant feedback paths g1…gM 

( /2M N≤ ) are used for optimal placement of the zeros of the noise transfer function 

(NTF). The feedback architecture can include N+1 feed-in paths b1… bN+1, and it needs 

N+1 feedback paths a1… aN+1, where the last feedback is used for excess-loop-delay 

(ELD) compensation [21]. The feedback architecture is commonly implemented with 

b1=a1 and b2…bN+1=0 [59] which results in a low-pass STF with no out-of-band 

peaking, as shown in Figure 5.2. The price paid for this desirable characteristic is an 

increase in integrator output swings due to the addition of the feedback signal to all 

internal nodes. This implies that low-gain integrators with large integration capacitors 

are required to avoid clipping. Using extra feed-in paths bi (i=2… N+1) reduces the 

signal swings at the integrator outputs, but it causes an unwanted STF peaking similar to 

a feedforward structure. In principal, the feedforward architecture requires only one 

overall feedback path. Low-swing feedforward architectures often use a direct feed-in 

path bN+1=b1 to make the voltage swings inside the loop filter smaller and less  
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Figure 5.1: Prior art: (a) Third order feedback (b) feed-forward  and (c) feedback-

feedforward CT-∆Σ modulator architectures. 

 

 

dependent on the input signal [60]. The remaining feed-in coefficients i.e., b2…bN  

 (shown in gray) are typically zero. The price paid for lower voltage swings in a 

feedforward modulator is an unwanted STF out-of-band peaking and reduced anti-

aliasing. As a compromise between integrator swings and STF filtering, a combination  
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Figure 5.2: A third order NTF shown with STF’s of feedback, feedforward, and 

feedback-feedforward CT ∆Σ topologies. 

 

 

of feedback and feedforward topologies has been proposed in [61]. This structure as 

shown in Figure 5.1(c) improves the anti-aliasing, but does not fully eliminate the STF 

peaking.  

The STF of feedback, feedforward and combined feedback-feedforward 

architectures is shown in Figure 5.2 for comparison, assuming all have identical NTF. 

The corresponding coefficients are included in Figure 5.1. The STF of the feedforward 

modulator shows significantly less anti-aliasing filtering than the other two 

architectures. It also shows 11dB of STF out-of-band peaking. This extra gain may lead 

to clipping and system overload if strong out-of-band signals are present at the input. 

The STF of the structure in Figure 5.3(c) provides 30 dB more anti-aliasing than the 

feedforward and shows 5dB less STF peaking, however, the peaking starts at a lower 

frequency. The feedback modulator shows the best STF without any peaking and with 
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monotonic roll-off that can be leveraged to simplify the base-band filter design in a 

receiver application.  It also provides 55 dB more anti-aliasing than the low-swing 

feedforward structure.  

In wireless applications, peaking in the STF of the CT-∆Σ modulators can 

effectively degrade the dynamic range of the receiver. This dynamic range penalty due 

to STF peaking can potentially outweigh the merits of the low-swing architectures. 

 

5.1.1 STF Analysis 

In a CT-∆Σ-modulator the signal is filtered by the loop filter before being 

sampled by the quantizer. This provides inherent anti-aliasing which is well documented 

in the literature [17], [62]. In any single-loop modulator, including those shown in 

Figure 6.1, two transfer functions can be identified within the modulator. The feedback 

path transfer function from DAC output u1(t) to the  sampler input y(t) defined as 

 

2
1 ( ) 0

( )
( )

( )
U s

Y s
LF s

U s =
=  (5.1) 

and the forward path transfer function from the modulator input u2(t) to the sampler 

input y(t) defined as 

 

1
2 ( ) 0

( )
( )

( )
U s

Y s
FF s

U s =
=  (5.2) 

Figure 5.3(a) shows the linearized model of a CT-DS modulator which includes the 

transfer functions defined in (5.1) and (5.2). The feedback path transfer functions define 

the noise- shaping of the modulator. This becomes clear if we replace the CT loop-filter 
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Figure 5.3:  (a) Linearized model of a CT ∆Σ modulator, (b) Linearized model with the 

inner loop replaced by the DT equivalent loop-filter H(z). 

 

 

with an equivalent discrete-time loop transfer function H(z) as shown in Figure 5.3(b). 

Using this model the loop filter H(z) can be related to noise transfer function as 

 
1

( )
1 ( )

NTF z
H z

=
−

 (5.3)  

Since the input of the CT loop filter is a series of DT impulses, the Impulse-invariant-

transformation is commonly used to map LF(s) to H(z) [17], [63-64] 

 { }{ }1( ) ( ) ( ) ds
DAC t nTH z LF s H s e τ− −

== ⋅ ⋅Z L  (5.4) 

where Z{.} and L
-1

{.}, respectively, denote the Z and the inverse Laplace transforms, τd 
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Figure 5.4: STF and NTF of a sample third-order CT ∆Σ modulator shown with the 

pre-filtering TF, FF(s). The FF(s) of a low-swing feed-forward modulator 

is shown for comparison. 

 

 

is the excess-loop-delay and HDAC(s) is the Laplace transform of the DAC waveform. It 

is noted that the HDAC(s) in (5.4) indicates that the shape of the feedback signal needs to 

be taken into account. This can be achieved using the pre-computed mapping tables for 

return-to-zero (RZ) and no-return-to-zero (NRZ) DAC waveforms [17], [20] or through 

the generalized method described in [50].   

Also using Figure 5.3(b), the Signal Transfer Function (STF) from the CT input 

u2(t) to the DT output d[n]  can be expressed in terms of the modulator NTF and the 

forward path filter FF(s) as [65]  

 ( ) ( ) ( )j TSTF j FF j NTF e ωω ω=  (5.5) 

Equation (5.5) is plotted in Figure 5.4 for a third-order low-pass ∆Σ modulator with  
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over-sampling-ratio (OSR) of 16. The forward path transfer function is shown for 

conventional feedback and low-swing feedforward modulators. The FF(s) of the 

conventional feedback modulator of Figure 5.1(a) is a third-order all-pole transfer 

function which is obtained in terms of the modulator’s coefficients as 

 1 1 2 3
2

1 2

( )
( )

FBK

b c c c
FF s

s s g c
=

+
 (5.6) 

Also, from Figure 5.1(b) the pre-filtering of the low-swing feedforward topology with 

b1=b4 and b2=b3 = 0 is : 

 
3 2

1 2 2 1 3 1 2 2 1 3 1
2

1 2

[ ( ) ( )]
( )

( )
FFW

b s a s c g a c s c a g c c
FF s

s s g c

+ + + + +
=

+
 (5.7) 

A normalized sampling period of T=1 is used in deriving (5.6) and (5.7) for the 

sake of simplicity. 

 It is seen that the transfer functions FF(s) in both feedback and feedforward 

structures have identical denominators. The poles of FF(s) always coincide with the 

zeros of NTF(z) and cancel out each other. In this example, the sole pole of FF(s) at DC 

corresponds to a zero in the NTF at DC and the conjugate imaginary poles of FF(s) at 

1 2j g c±  correspond to the NTF’s conjugate zeros on the unit circle. As a result, the 

STF exhibits a flat in-band frequency response. On the other hand, the difference 

between feedback and feedforward structures lies in the numerator of FF(s). According 

to (5.7) the transfer function FF(s) of the low-swing feedforward modulator has three 

zeros and its high frequency gain approaches b1 (b1=1 in the graph of Figure 5.3). These 

zeros limit the high frequency role-off of FF(s), and when combined with the NTF’s 

out-of-band gain, they cause the STF to exhibit out-of-band peaking. In order to show 



 117 

the effect of the zeros, the FF(s) of the feedback-feedforward modulator in Figure 5.1(c) 

is obtained as 

 1 2 3 1 1 2 3
2

1 2

( )
( )

FBK FF

ba c s b c c c
FF s

s s g c
−

+
=

+
 (5.8)  

Clearly in (5.8) the order of the numerator of FF(s) is reduced compared to (5.7) 

which results in improved STF anti-aliasing and reduced peaking. The STF peaking, 

shown in Figure 5.2, arises from the non-zero first-order term in (5.8) which can not be 

canceled in this specific architecture.  

For an STF with unity in-band gain, the magnitude of FF(s) at low frequencies is 

the inverse of the magnitude of NTF(z). Figure 5.5 indicates that this relationship holds 

up to Fu where the magnitude of NTF crosses 0 dB. Beyond this point, the NTF shows 

an out-of-band gain which depends on the aggressiveness of noise shaping. A higher 

SQNR corresponds to a more aggressive noise shaping with a larger maximum out-of-

band gain which can eventually translate into a larger peaking in the STF of the low-

swing feedforward or feedback-feedforward modulators. 

The relationship between the NTF unity-gain frequency Fu and the oversampling 

ratio (OSR) is plotted in Figure 5.4 for different modulator orders. Fu is normalized to 

the signal bandwidth Fb to show the relative location of the NTF unity-gain frequency 

with respect to the band edge. It is assumed that all the NTFs are Chebyshev type-II with 

optimized zeros [8], [66] and have 10 dB of maximum out-of-band gain. Increasing the 

order of the modulator or decreasing the OSR pushes the unity frequency Fu closer to 

the signal band. Therefore, high dynamic range and low-OSR modulators using the low-

swing feedforward topology tend to cause a more serious STF  
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Figure 5.5: NTF unity gain frequency normalized to signal bandwidth Fb, versus OSR 

for different modulator orders. 

 

 

peaking problem. In wireless applications, close-in peaking in the STF would require 

more front-end filtering to prevent a strong adjacent or next channel interferer from 

saturating the modulator. In contrast, equation (5.6) indicates that FF(s) in the case of 

the feedback modulator is an all-pole transfer function. This interesting property stems 

from the fact that there exists a single path between the input and the output of the 

modulator. The magnitude of FFFBK(s) keeps rolling off as frequency increases. 

Consequently, not only does the STF become free of peaking, but it achieves 55 dB of 

additional anti-aliasing near the sampling frequency Fs. In summary, comparing 

equations (5.6), (5.7) and (5.8) reveals that the key to a peaking-free STF is to make the 

forward path transfer function FF(s) an all-pole filter.  
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5.1.2 Design Methodology for Peaking-Free STF 

Most design methodologies discussed in the literature aim to synthesize a CT 

loop filter with a single input path (b1) which, upon discretization, realizes a desired 

prototype NTF(z) [20], [50], [63-64]. Since all the coefficients of the system are derived 

uniquely to achieve a certain NTF, the STF becomes merely a by-product of the design 

process with no control upon it. In what follows, we discuss a design methodology in 

which the NTF and the all-pole FF(s) of a CT-∆Σ modulator are simultaneously 

synthesized so that a peaking free low-pass STF is obtained. To this end, we consider an 

Nth-order feedforward modulator similar to the one shown in Figure 5.1(b) with non-

zero feed-in coefficients b2, b3, … bN in addition to the input path gain b1. The extra 

feed-in coefficients provide the additional degree of freedom necessary to eliminate 

peaking in the STF. The first step in the design process is to select an NTF and then 

apply (4) to obtain the corresponding DT loop filter H(z). The next step is to synthesize 

a CT loop filter LF(s) which upon time-discretization, described by equation (5.3), will 

equate H(z). This computation can readily be performed for an NRZ DAC using the 

‘d2c’ function of MATLAB Control Toolbox [67]. Doing so, we obtain a CT loop filter 

in the numerical form as 

 �
-1

1 -1 1 0
1

-1 1 0

( ) ( ... )
( )

( ) ...

N
N

N N
N

N s s s
LF s

D s s s s

β β β

α α α−
− − + + +

= =
+ + + +

 (5.9) 

A powerful method to derive the transfer functions FF(s) and LF(s) is the state-

space formulation [68]. In this method the eigenvalues of the state matrix of the system 

are unique. Thus the transfer functions FF(s) and LF(s) necessarily have identical 

denominators denoted by D(s) in (5.9). On the other hand, the numerator of FF(s) can 
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generally be a polynomial of the same order as D(s). Therefore, the general form of the 

feedforward filter FF(s) can be written as 

 �
1

2 1 1 0
1

-1 1 0

( ) ...
( )

( ) ...

N N
N N

N N
N

N s s s s
FF s

D s s s s

γ γ γ γ

α α α

−
−

−
+ + + +

= =
+ + + +

 (5.10) 

In the previous section, it was mentioned that the key for avoiding peaking in the 

STF and achieving a monotonic roll-off is an all-pole FF(s). This requires all the terms 

in the numerator of FF(s) except γ0, to be zero; i.e., 

 1 1... 0N Nγ γ γ−= = = =  (5.11) 

It should be emphasized that the goal here is to eliminate the zeros of FF(s) by 

nulling out the non-constant terms in (5.10) rather than pole-zero cancellation. The 

value of 0γ can be linked to the DC gain of the STF. To this end, we note that at low 

frequencies the DT loop filter H(z) approaches the CT loop filter LF(s) such that at DC 

they become identical. Therefore, replacing H(z) with LF(s) in (5.4) and substituting the 

result into (5.5) yields 

 
0 ( )

( )
1 ( )

s FF s
STF s

LF s

→

−≈  (5.12) 

Using (5.9) and (5.10) in the above equation, the condition for 0 dB DC gain is 

derived as  

 2

0 1

( )
lim 1

( ) ( )s

N s

N s D s→
=

+
 (5.13) 

This condition leads to the following equation for 0γ  

 0 0 0γ β α= +  (5.14)  

In order to calculate the modulator coefficients, we need to obtain the parametric 

transfer functions LF(s) and FF(s) in terms of the unknown coefficients of the CT 

modulator. The state-space equations of the system are written as 
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.

1 2

1 2

T

T

x x U U

Y x U U

 = + = +

A B[ ]

C D[ ]
 (5.15) 

where each state x corresponds to an integrator output, Y is the input of the sampler, U1 

is the D/A converter output and U2 is the modulator input. The parametric transfer 

functions corresponding to the U1 and U2 inputs are defined as 

 
1 2

( ) ( )
( )

( ) ( )

T
Y s Y s

s
U s U s

 
=  
  

G  (5.16) 

where G(s) is given by the following equation 

 1( ) ( )s s −= − +G C I A B D  (5.17) 

The parametric transfer functions LF(s) and FF(s) are respectively derived from 

the first and second rows of G(s) computed in (5.17). Subsequently a system of non-

linear equations is constituted by equating the parametric transfer functions with �( )LF s  

in (5.9) and �( )FF s in (5.10), and adding the constraints (5.11) and (5.14). Solving this 

system of equations eventually provides the numerical values of all the coefficients. 

This procedure can easily be programmed in a symbolic analysis software package. The 

number of equations and the number of unknowns depends on the order of the system 

and the topology of the modulator. For example an Nth-order feedforward modulator 

with N/2 resonators, for N even, leads to 2N+N/2+1 equations and 3N+N/2+1 

unknowns. This provides N additional degrees of freedom that can be used to scale the 

integrator gains and thereby, optimize the voltage swings of the integrators.  This step 

involves system level transient simulations and adjustment of the integrator gains in an 

iterative process.  
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One can note that the peaking elimination technique explained so far relies 

fundamentally on equation (5.11) and allows for computing the modulator coefficients 

in a way that the non-constant terms in the numerator of FF(s) are canceled out. As a 

result, any deviation of the coefficients that violates (5.11) will cause peaking in the 

STF and also degradation in anti-aliasing. Therefore, the STF of such a feedforward 

structure is sensitive to random and systematic component variation [69]. This shortfall 

has been the main motivation here to develop two novel CT-∆Σ modulator architectures 

with significantly less STF sensitivity to component variations while preserving some 

advantages of the conventional feedforward structure.  

 

5.1.3 Lowpass Feeforward Design Example 

Suppose that we desire to implement a feedforward CT-∆Σ modulator with low-

pass STF and 89 dB of SQNR at OSR of 16. Assuming a 4-bit quantizer, the following 

third-order inverse Chebyshev NTF was found to meet the design specification: 

 
2

2

( 1)( 1.977 1)
( )

( 0.3474)( 0.6295 0.2935)

z z z
NTF z

z z z

− − +
=

− − +
 (5.18) 

From (5.3) the corresponding DT loop filter is obtained as:   

 
2

2

2( 1.232 0.449)
( )

( 1)( 1.977 1)

z z
H z

z z z

− +
=

− − +
 (5.19) 

Using (5.19) and (5.4) and assuming an NRZ DAC waveform and total excess-loop-

delay of /2d Tτ = , the DT transfer function H(z) is mapped to the following CT loop-

filter:  

 �
3 2

3

(0.8374 1.984 1.321 0.4342)
( )

+0.0231
d

s s s
LF s

s s

− + + +
=  (5.20)  
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According to (5.10), (5.11) and (5.14) the required prefiltering transfer function is  

 �
3

0.4342
( )

+0.0231
dFF s

s s
=  (5.21) 

For the third-order feedforward topology shown in Figure 5.1(a) the state space matrices 

of the modulator are 

 

1 1

1 1 2

2 3

2 3 3 4 4

0 0 0
0 0

feed-forward 0 0 0

a b

c g b

c b

a a c a b

    −       = − =              = = −        

A B

C D

 (5.22) 

Using (5.16) and (5.17) the parametric transfer functions LF(s) and FF(s) are found as 

 

3 2
3 2 1 0

2
1 2 1

3 2
3 2 1 0

2
2 2 1

( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

Y s K s K s K s K
LF s

U s s s c g

Y s L s L s L s L
FF s

U s s s c g

 − + + + = = + + + + = = +

 (5.23) 

The parametric equivalents of Ki and Lj coefficients and the set of equations to 

be solved are given in Table 5.1. Three additional equations specify the value of the 

scaling coefficients c1, c2, and c3. These coefficients control the signal swing at the 

integrator outputs and hence can be used to cope with headroom limitations in a low-

voltage design. In this example we iteratively settled on c1=0.5, c2=1 and c3=2 based on 

behavioral simulations. It should be noted that the choice of these coefficients affects 

the value of the other coefficients, but does not alter the NTF and STF of the CT 

modulator. Therefore, we end up with a set of 9 equations and 9 unknowns which once 

solved yields 

1 2 3 4

1 2 3 4

1 2 3 1

0.39 5.11 6.71 0.84

0.39 0.58 0.95 0

0.5 1 2 0.023

a a a a

b b b b

c c c g

 = = = = = = − = = = = = =
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Table 5.1: LF(s) and FF(s) Coefficients of the Feedforward Topology 

 

term Parametric Equivalent In (9), (10) Value  

3K  4a  3β  0.8374 

2K  2 3a a  2β  1.984 

1K  1 3 1 4 2 1a a c a c g+  1β  1.321 

0K  1 2 1 3 2 1( )a c c c a g+  0β  0.4342 

3L  4b  3γ  0 

2L  1 2 2 3 3 3b a b a b c+ +  2γ  0 

1L  1 1 3 2 2 3 1 4 2 3 3( )b c a b c c g b c b a+ + −  1γ  0 

0L  1 1 2 3 2 2 1( )b c c c a c g+  0γ  0.4342 

--- 2 1c g  1α  0.0231 

 

 

5.1.4 Effect of Random Coefficient Mismatch 

Coefficient values in a CT-∆Σ-modulator can exhibit large variations due to the 

dependence on the absolute values of two different components like R and C, or Gm and 

C in the case of active-RC or Gm-C implementations, respectively. To avoid instability 

caused by excessive component variations, CT-∆Σ modulators usually employ on-chip 

tuning to keep the coefficients close to their nominal values [70]. Nonetheless, random 

coefficient mismatch can still persist and affect the modulator transfer functions. 

In the previous section the methodology for implementing a low-pass STF by 

way of coefficient cancellation was explained. In the case of the feedforward topology, 

like in the design example, extra feed-in paths were employed to null out the non 

constant terms of the FF(s) numerator, L1 to LN . However such all-pole-made FF(s) 

will still carry an inherent numerator order of N in an N-th order modulator. 

Consequently any deviation of the coefficients from their nominal values can uncover  
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Figure 5.6: Monte-Carlo simulation results showing the effect of 2% mismatch 

 (σ = 0.02) on the STF of a 3
rd

-order feedforward CT-∆Σ modulator. 

 

the hidden zeros of the FF(s) and cause significant variability in the STF magnitude 

response. 

 Figure 5.6 shows the results of a Monte-Carlo simulation with 1000 runs 

performed on the feedforward modulator of the design example when the mismatch 

standard deviation (σ) is 2% . The mismatch effect is manifested as unwanted STF 

peaking at low frequencies and degraded anti-aliasing in the vicinity of the sampling 

frequency. In the 1000 runs performed, the maximum deviation from the 99 dB nominal 

anti-aliasing was 30 and 33 dB at the low and high sides of the alias-band respectively. 

Also the largest out-of-band peaking was 5 dB across the runs.  

More information about the mismatch effect can be extracted from individual 

histograms of amplitude variation at each frequency point. Considering the 2%  
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Figure 5.7: Nominal & Maximum (99% probability) STF amplitude (Right Axis); and 

STF amplitude standard deviation (Left Axis) for 2% mismatch. 
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Figure 5.8: Worst-case (with 99% certainty) STF peaking and anti-aliasing versus 

coefficient mismatch in the 3
rd

-order feedforward modulator. 
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Figure 5.9: Output spectrum of a low-pass STF feedforward modulator in presence of 

2% coefficient mismatch. 

 

 

mismatch case, a compilation is provided in Figure 5.7 which shows the maximum STF 

amplitude ( with P(|STF|< AMAX) = 99% ) and the standard deviation of dB-magnitude 

variations. With 99% certainty, the STF anti-aliasing and out-of-band peaking are no 

more than 69.5 dB and 2.2 dB respectively when coefficient mismatch is 2% . Similar 

data is shown in Figure 5.8 when mismatch standard deviation is varied from 0 to 2% . 

According to these results the STF of the feeforward topology shows strong sensitivity 

to the random mismatch and can be degraded by 24 to 44 dB for the anti-aliasing and by 

1 to 11 dB for the out-of-band peaking when mismatch is varied from 1% to 10% .  

A worst-case scenario output spectrum of the 3
rd

-order feedforward modulator is 

shown in Figure 5.9 when STF is affected by the 2% mismatch and anti-aliasing is 

maximally degraded. The input signal comprises two -6 dBFS tones at 4.5 MHz and 162 
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MHz and the sampling frequency is 160 MHz. The ideal and worst case anti-aliasing at 

162 MHz are 106 dB and 76 dB according to Figure 5.7 data. Hence the down converted 

alias tone at 2 MHz is 30 dB stronger when mismatch is present, degrading the SNDR 

from 81 dB to 74.5 dB. 

In multi-standard transceiver applications, unless higher-order prefiltering is in 

place, the alias band of the CT-∆Σ modulator can include strong tones. Immunity 

against these tones requires a peaking free STF with robust anti-aliasing. However the 

conventional feedforward topology is prone to sever anti-aliasing degradation by 

random variations of the coefficients and even a small mismatch as 1% can degrade 

anti-aliasing by more than 20 dB (see Figure 5.8).  It is difficult to achieve better 

matching levels even with best layout practices. Therefore an ideal topology for receiver 

applications should have an STF with low sensitivity to mismatch. In the following 

sections we will introduce two novel architectures that can provide a low-pass STF with 

reduced sensitivity to component mismatch. 

 

5.2 The Dual-Feedback Architecture 

The proposed dual-feedback modulator architecture is depicted in Figure 5.10(a) 

for the case of a third-order system. This topology provides a low sensitivity STF by 

using fewer coefficients for the synthesis of an all-pole FF(s) and at the same time 

reduces the number of inherent zeros in the FF(s) by means of the second feedback 

path. The dual-feedback idea can easily be extended to the modulators of higher order 

by creating N-2 feedforward paths cf1…cfN-2 from the output of the first integrator to the 

input of all subsequent integrators except the second, as shown in Figure 5.10(b) for a  
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Figure 5.10: The dual-feedback architecture with ELD compensation; (a) a third-order 

example; (b) a fifth-order example.  

 

 

fifth-order example. The extra cf1…cfN-2 feedforward paths are essential to the synthesis 

of an all-pole FF(s). For any order, the modulator requires a single input path and two 

feedback paths and allows for the synthesis of a robust low-pass STF without 

compromising the NTF. The second D/A has relaxed noise and linearity requirements 

since its noise and non-linearity will be first-order shaped by the first integrator. The 

direct feedback aN+1 (i.e. a4 in Figure 5.10(a)) provides a classical solution for the ELD 

problem common to all CT modulators using NRZ DACs [21]. The coefficients c1…cN 

are mainly used to scale the output swings of the integrators.  

In the third-order dual-feedback modulator of Figure 5.10(a), the state-space 

matrices of the system are 
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1 1 1

1 2

1 2

3 3 4

0 0
0 0 0

dual-feedback 0 00

0 0

g a b

c a

cf c

a c a

     − −         = = −     −          = = −        

A B

C D

 (5.24) 

Using (16) and (17) the parametric LF(s) and FF(s) transfer functions become 

3 2
3 2 1 0

2
2 1

1 0
2

2 1

( )
( )

( )
dual-feedback

( )
( )

K s K s K s K
LF s

s s c g

L s L
FF s

s s c g

 − + + + = + + = +

 (5.25) 

with the parametric equivalents of Ki and Lj given in Table 5.2.  The denominators in 

(5.25) show a DC pole and conjugate imaginary poles at 1 1j g c± . In Figure 5.10(a), 

the resonant path (i.e., g1 ) is built around first and second integrators so that the last 

integrator can also be used as an analog summer.  

In general the numerator order of FF(s) in an N-th order dual-feedback 

modulator is N-2. Thus one can immediately expect lower STF sensitivity compared to 

a feedforward structure with FF(s) numerator of order N (see (5.7) and (5.23) ) .  

 

5.2.1 Dual-Feedback Design Example 

Applying the proposed peaking-free STF design methodology to the modulator 

of Figure 5.10(a), the coefficient values can be computed for the NTF in (5.18). The 

first few steps involve computing the numerical FF(s) and LF(s) transfer functions and 

is identical to the feedforward design example in (5.20) and (5.21) respectively. The set 

of equations to be solved is given in Table 5.2. Three additional equations specify the 

value of the scaling coefficients c1, c2, and c3.  as c1 =0.5, c2 =1 and c3 =2 determined 
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Table 5.2: LF(s) and FF(s) Coefficients of the Dual-Feedback Topology 

 

term Parametric Equivalent In (9), (10) Value  

3K  4a  3β  0.8374 

2K  2 3a a  2β  1.984 

1K  1 3 1 3 1 2 2 3 4 1 1( ) +a a c c cf a c c a c g− +  1β  1.321 

0K  1 1 2 3 2 1 3 1a c c c a g c cf+  0β  0.4342 

1L  1 3 1 3 1( )b a c c cf−  1γ  0 

0L  1 1 2 3b c c c  0γ  0.4342 

--- 1 1c g  1α  0.0231 

 

 

 

from behavioral simulations. Hence we end up with a set of seven equations and seven 

unknowns which once solved yields 

 

1 2 3 4

1 1

1 2 3

0.39 0.65 3.04 0.84

0.43 1 0.76 0.05

0.5 1 2

a a a a

b cf g

c c c

 = = = = = = = = = =

  

 

5.3 The Dual Feed-In Architecture 

The proposed dual feed-in architecture is shown in Figure 5.11 using third and 

fifth order examples. Without compromising the NTF, this topology allows for the 

synthesis of an all-pole FF(s), and hence a peaking-free low-pass STF, by using only 

one extra feed-in path for arbitrary modulator order. Compared to the conventional 

feedforward structure, the STF sensitivity to mismatch is slightly lowered due to a 

reduction in the number of feed-in paths. Also similar to the dual-feedback case, there 

are N-2 inter- stage feedforward paths marked by cf1…cfN-2 which extend from the 

output of the first integrator to the input of all subsequent integrators except the second. 
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Figure 5.11: The dual feed-in architecture with ELD compensation; (a) a third-order 

example; (b) a fifth-order example.  

 

 

The cf1…cfN-2 coefficients along with the second feed-in coefficient b2 are essential to 

the synthesis of an all-pole FF(s). Compared to the dual-feedback topology, the 

feedback is replaced by a feedforward path a2 that links the fist integrator output to the 

quantizer input. Needing a single feedback DAC along with the low-pass STF feature 

makes the architecture an attractive choice for multi-mode and reconfigurable receiver 

applications. The added noise by the extra feed-in path is negligible due to a first-order 

noise shaping provided by the first integrator. The direct feedback aN+1 (i.e. a4 in Figure 

5.11 (a) ) is used for ELD compensation and is common to all CT-∆Σ architectures. 

Similar to feedforward and dual-feedback topologies, the c1…cN coefficients are used 

mainly for scaling the output swings of the integrators.  In the dual feed-in prototype  
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Table 5.3: LF(s) and FF(s) Coefficients of the Dual Feed-In Topology 

 

term Parametric Equivalent In (9), (10) Value  

3K  4a  3β  0.8374 

2K  1 2a a  2β  1.984 

1K  1 3 1 3 1 4 1 1( )a a c c cf a c g+ +  1β  1.321 

0K  1 1 2 3a c c c  0β  0.4342 

2L  1 2 2 3b a b a−  2γ  0 

1L  1 3 1 3 1 2 2 3 2 1( ) ( )b a c c cf b c c a g+ − −  1γ  0 

0L  1 1 2 3 2 1 3 1+b c c c b g c cf  0γ  0.4342 

--- 1 1c g  1α  0.0231 

 

 

 

shown in Figure 5.11(a), the state-space ABCD matrixes of the system are 

 

1 11

1 2

1 2

2 3 3 4

0 0
0 0 0

dual feed-in 0 00

0

a bg

c b

cf c

a a c a

     −−         = = −               = = −        

A B

C D

 (5.26) 

Using (5.16) and (5.17) the parametric LF(s) and FF(s) transfer functions are derived as 

 

3 2
3 2 1 0

2
2 1

2
2 1 0

2
2 1

( )
( )

( )
dual feed-in

( )
( )

K s K s K s K
LF s

s s c g

L s L s L
FF s

s s c g

 − + + + = + + + = +

 (5.27) 

The parametric equivalent of  Ki and Lj terms is given in Table 5.3.  The denominators 

in (5.27) show a DC pole and conjugate imaginary poles at 1 1j g c± . Also the resonant 

path through g1 , as shown in Figure 5.11(a), is built around the first and second 

integrators so that the last integrator can be optionally used as an analog summer.  
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5.3.1 Dual Feed-In Design Example 

Applying the proposed peaking-free STF design methodology to the prototype 

modulator of Figure 5.11(a), the coefficient values are computed for the NTF in (5.18). 

The few initial steps until computing the numerical FF(s) and LF(s) transfer functions 

are identical to the feedforward design example in (5.20) and (5.21), respectively. The 

set of equations to be solved are listed in Table 5.3. Like the previous design examples, 

three more equations specify the value of the scaling coefficients c1, c2, and c3. We 

iteratively settled on c1=0.5, c2=1 and c3=2 based on integrator output swings obtained 

from behavioral transient simulations. Hence we end up with a set of 8 equations and 8 

unknowns which once solved yields 

 

1 2 3 4

1 2 1

1 2 3

0.434 4.57 2.73 0.84

0.38 0.65 0.05 1 0.82

0.5 1 2

a a a a

b b g cf

c c c

 = = = = = = = = = = =

  

 

5.4 STF Sensitivity Comparison 

In the previous sections we discussed the effect of mismatch on STF peaking 

and anti-aliasing in a feedforward structure. The dual-feedback and dual feed-in 

topologies use less feed-in coefficients or have a reduced-order FF(s) numerator, which 

promises a more robust STF. The Monte-Carlo simulation results in Figure 5.12 provide 

a comparison of the STF sensitivity among the proposed architectures. Assuming 2% 

coefficient mismatch and 99% yield ( P(|STF|<x)=0.99 ), Figure 5.12(a) shows the 

worst-case STF amplitude versus frequency. Careful examination of the STF in the 

vicinity of the sampling frequency reveals an anti-aliasing degradation of, respectively,  
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Figure 5.12: STF sensitivity comparison when mismatch σ = 2% (a) worst-case STF 

magnitude response; (b) Standard deviation of ∆|STF|.  

 

4 dB and 27 dB from the expected 99 dB for the dual-feedback and dual feed-in 

modulators while the feeforward modulator exhibits a 32 dB degradation. Moreover the 
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worst-case STF peaking stays below 1 dB and 2 dB, respectively, for the dual-feedback 

and dual feed-in structures while the feedforward modulator can show up to 4 dB of 

peaking. Figure 5.12(b) compares the standard deviation of the STF of these modulators 

due to component mismatch versus frequency. Except for frequencies corresponding to 

the notches of the STF, the STF of the dual-feedback modulator exhibit less than 1 dB 

variation over the entire frequency range from DC to the sampling frequency.  The dual 

feed-in structure which uses only a single DAC in its feedback path provides slightly 

better STF behavior than the feedforward modulator, particularly at lower frequencies. 

This helps the modulator to withstand larger out-of-band blockers in a receiver 

application, when compared to the feedforward structure. Clearly the dual-feedback 

structure provides the lowest sensitivity STF and best filtering performance, although at 

the expense of an extra feedback DAC. 

 

 

5.5 Analog Summer Elimination 

CT-∆Σ modulators using feeforward, dual-feedback or dual feed-in structures, as 

respectively shown in Figures 5.1(b), 5.10(a) and 5.11(a), require an explicit analog 

summer before the quantizer. This block requires an extra amplifier to implement and 

can demand significant bandwidth and power consumption due to the small feedback 

factor seen by the opamp. In the proposed dual-feedback and dual feed-in structures the 

adder can be eliminated by performing both the integration and summation operations in 

the third stage of the modulator. This can be achieved only if the signals carried through 

the direct feedback paths a4 and the feedforward paths a3 (and a2 in dual feed-in) are 

differentiated prior to being applied to the third integrator. Since the feedback  
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Figure 5.13: (a) Dual-feedback and (b) dual feed-in architectures modified for analog 

summer removal. 

 

 

signal is inherently discrete-time, it can be differentiated using a semi-digital DT 

differentiator with a transfer function of the form [71] 

/( ) 1 ; ( )T
dTF z z Tτ τ τ−= − ≤ −  (5.28) 

In this case the direct feedback a4 in Figures 5.10(a) and 11(a) should be replaced with 

1
4 4 3' ( / ) (1 / )da a c Tτ −= ⋅ −  as shown in Figure 5.13. The operation of the DT 

differentiator can be explained intuitively using Figure 5.14(a). The ideal NRZ pulse  
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Figure 5.14: (a) Dual-feedback and (b) dual feed-in architectures modified for analog 

summer removal. 

 

 

has amplitude A and duration of one sampling period (T). Subject to an ELD equal to τd, 

the ideal waveform will be delayed by α T where α = τd / T is the normalized delay.  

Subtracting the T-shifted quantizer signal from the original output results in a return to 

zero pulse that extends to the next sample by a negative sign, and we will refer to this 

waveform as bi-phase-return-to-zero (bi-phase-RZ). The integration of this pulse using 

the last stage of the loop-filter produces a trapezoidal signal that flattens during the 

return-to-zero intervals, and its net effect on the integrator state gets reset to zero at time 

2T. At the sampling instance the peak of the trapezoid will be equal to A provided the 

amplitude of the bi-phase-RZ pulse is multiplied by (1-α)
-1

before being applied to the 

last integrator. In other words the original feedback a4 should be scaled by (1-τd/T)
-1

. 

Due to the sharing of the c3 gain with integrator output, further scaling by 1/c3 will be 

required to keep the state of the quantizer input unchanged, leading to a total scaling of 

1
4 4 3' ( / ) (1 / )da a c Tτ −= ⋅ − . 
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An important benefit of the DT differentiator approach is a two-fold reduction in 

the last integrator’s output swing as shown by the histograms of the state variables in 

Figures 5.14(b) and (c). It is also noted that the gain c3 can be built into the quantizer. 

Particularly a c3>1 further reduces the last integrator output swing which can be 

beneficial in a low-voltage design. However this would set more stringent requirements 

on the quantizer design because the comparators would need to resolve smaller voltages. 

The comparator challenge in most cases is easier to manage than the headroom 

limitation which is a fundamental issue in low-voltage designs. The subtraction in (5.28) 

is implemented simply by connecting the two current-mode NRZ DAC outputs together 

with opposite polarities. 

Differentiation in the feedforward paths can be carried out by replacing the 

constant gain block a3 (and a2 in dual feed-in) with sTa
’
3 (and sTa

’
2 in dual feed-in) as 

shown respectively for the adder-less architectures in Figure 5.13(a) and (b). In an 

active-RC implementation, the differentiator path with sTa
’
3 scaling factor is realized by 

a capacitive input with a value of a
’
3Cf when Cf is the integration capacitor. This will 

increase the noise gain of the last integrator and will reduce its closed loop bandwidth. It 

should be noted that in the adder-less topologies of Figure 5.13, any latency originated 

from the limited bandwidth of the last integrator, will be directly added to modulator 

ELD which can harm the performance. One way to alleviate this problem is to increase 

the feedback factor of the last integrator by proper choice of the modulator coefficients, 

where the relationship can be approximated as 

 

1

2
N

j
sum

Nj M

a

c
β

−

=

  ≈ +   
∑  (5.29) 
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In the above aj s are feedforward coefficients values and cN is the last integrator output 

scaling factor, N is the modulator order and the architecture-dependent parameter M 

≤N is respectively 3 and 2 for the dual-feedback and dual feed-in structures of Figure 

5.13. Assuming the ELD compensation uses current mode DACs to implement the DT 

differentiator, the gain a’4 will not affect the feedback factor. Equation (5.29) clearly 

shows that when cN > 1, building the last integrator gain into the quantizer increases the 

feedback factor. This involves a trade-off between relaxing the open loop bandwidth of 

the last amplifier and more stringent requirements on the comparators of the quantizer. 

For example the choice of c3=2 can be justified only if the power saving in the last 

integrator, by allowing the use of a slower amplifier, outweighs the power increase in 

the flash quantizer by cutting the LSB size in half which lowers the tolerable offset by a 

factor of two. 
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CHAPTER 6 

A THIRD-ORDER DUAL-FEEDBACK CT DELTA-SIGMA MODULATOR, 

DESIGN AND IMPLEMENTATION 

 

This chapter describes the design of a third-order CT-∆Σ modulator, 

implemented for proof of concept, based on the proposed adder-less dual feedback 

architecture in Figure 5.13(a). The design goals were 76 dB dynamic range (DR) over 5 

MHz signal bandwidth, 60 dB minimum anti-aliasing and no STF peaking. The NTF 

and STF of the design example in section 5.2.1 with OSR=16 and using a 16-level 

quantizer meet the noise shaping and anti-aliasing targets. The modulator NTF provides 

an ideal SQNR of 87.7 dB which leaves sufficient margin for the targeted dynamic 

range, after taking into account the circuit noise and non-idealities. The final block 

diagram of the system including the signal levels and coefficient values is shown in 

Figure 6.1. By simply decreasing the flash ADC’s reference level by a factor of 2, the 

c3=2 coefficient (see Figure 5.13(a) ) is built into the quantizer in order to relax the third 

integrator GBW requirements by increasing its feedback factor.  
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Figure 6.1: Structure of the implemented dual-feedback CT ∆Σ modulator. 
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≡

 
 

Figure 6.2: (a) Active-RC integrator with capacitive gain input, and (b) its block 

diagram representation 

 

 

 

The following sections will present and overview of the system and circuit level 

design as well as the test and measurement results. 

 

6.1 Modeling Active-RC Integrator with Capacitive Input 

In this work, active-RC integrators have been used to take advantage of their 

high linearity. Eliminating the analog summer requires the last integrator to operate as a 

summer for the path created by coefficient sa3 in Figure 6.1. This is achieved using a 

capacitor to couple between the second and third integrator in addition to a resistor to 

implement the path corresponding to c2 coefficient. Thus, the general structure of the 

integrators implemented in this design will be similar to Figure 6.2(a). The gain-

bandwidth product (GBW) of the amplifiers, used to realize the three integrators, affects 

the modulator dynamics and also its STF and NTF.  Low-voltage amplifier design in 

advanced CMOS technologies often rely on multi-stage topologies [72] to achieve 

sufficient DC gain. Obviously such amplifiers cannot be accurately described using a 

single-pole model [22] as explained in the behavioral model of Chapter-3. Moreover in 
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wideband CT-∆Σ modulators using higher orders NTFs and low OSR, the parasitic 

effects such as amplifiers stray input capacitance may not be negligible. An accurate 

integrator model is essential to studying the impact of the amplifier’s finite speed on the 

modulator performance. The basic integrator model of Chapter-3 needs enhancement to 

account for the capacitive input paths and associated feedback factor reduction. 

The building block built around an amplifier in a CT-∆Σ modulator may receive 

multiple signals through different components. The general structure of such a signal 

processing block with two resistive and one capacitive input is shown in Figure 6.2(a). 

Assuming an ideal amplifier, the output of this block would be 

 1 2
1 2 3 3

k k
Vout V V k V

sRC sRC
= + +  (6.1) 

The above ideal equation corresponds to the model in Figure 6.2(b). In practice, 

the amplifier exhibits a frequency-dependent gain of Av(s) which represents voltage gain 

from the inverting input Vx  to the output Vout. In the circuit of Figure 6.2(a) the transfer 

function of the i-th input can be expressed as 

 
( ) ( )

1 ( ) ( )
f v

i
i v

Z s A s
TF

Z s A s

β

β

⋅
= − ⋅

+ ⋅
 (6.2) 

where Zi is the impedance of the i-th input and Zf is the feedback impedance. For a 

resistive input with gain ik the impedance ratio becomes 

 
( / 1)

( 1)
f i z i

i z

Z k sRC k k s

Z sRC s k

+
= = +  (6.3) 

where ki and kz are the scaling factors of the i-th input resistor and the feedback resistor 

respectively. Also we have assumed a normalized sampling period of RC=T=1/Fs=1 to  
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make the integrator model independent of the sampling frequency. The feedback factor 

β (s) in the circuit of Figure 6.2(a) is 

 
2

( )

1p i
p j i

z zj i i

s
s

k k
s s k k k

k k

β =
 
 + + + + + 
 

∑ ∑ ∑
 (6.4) 

The above equation takes into account the effect of the amplifier’s input 

parasitic capacitance and also the feedback resistor Rz through parameters kp and kz 

respectively. Substituting (6.2) and (6.3) in (6.1) leads to an expression for the output 

voltage  as 

 
( ) ( )

( ) 1
1 ( ) ( )

i i v
j j

z vi j

s kV s A s
Vout s k V

k s s A s

β

β

   = + +    + 
∑ ∑  (6.5) 

The scaling factors ki and kj correspond, respectively, to the resistive and capacitive 

inputs.  The amplifier gain Av (s) can be expressed in terms of its DC gain, normalized 

poles, zeros and gain-bandwidth product (ωu ) as 

 
1
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( / 1)
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s z

A s
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=

=

+

=
+ ⋅ +

∏

∏
 (6.6) 

Note that 0 1u A pω =  can in general be different from the amplifier unity gain-

bandwidth. Also the gain expression in (6.6) needs to include the loading effect of the 

feedback network.  

A block diagram representation of equation (6.5) is depicted in Figure 6.3(a).  

The feedback-factor β(s) is placed in both feedforward and feedback paths to isolate the 

virtual ground node Vx. This makes it possible to accurately model the input-stage 

nonlinearity of the amplifier using a non-linear element, as illustrated in Figure 6.3(b). 
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Figure 6.3:  (a) Multi-input active-RC integrator model (b) including input stage 

nonlinearity. 

 

 

6.1.1 Finite Amplifier GBW Effect on Modulator Performance 

In this work, we have used the two-stage amplifier topology shown in Figure 

6.4. The amplifier employs Miller compensation through a current-mode feedback path. 

The open loop voltage gain of the amplifier includes a low-frequency dominant pole, a 

pair of non-dominant complex poles, a left-half-plane zero near the complex poles and a 

third pole at much higher frequencies than the unity gain which can be ignored. The 

transfer function of the amplifier in terms of transconductance gm1,2,3 , output resistance 

R1,2 and parasitic, load and compensation capacitors of respectively C1, C2 and Cc1 is 

derived as  

 
0

1
2

2
1

( 1)
( )
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ωω

+
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+ + +
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Figure 6.4:  Structure of the two-stage opamp used in active-RC integrators. 

   

 

where the DC voltage gain A0 , zero and poles are related to the amplifier parameters as 
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 (6.8) 

In an active-RC integrator the integration capacitor must be included as part of the load 

capacitor C2. Also capacitor CC2 is added to the amplifier inputs to gain further control 

over the closed-loop stability. The approximate closed loop GBW of this amplifier 

when used in an integrator application similar to Figure 6.2(a) is 

 1

1 2

m
u cl

c c

g C

C C C
ω − ≈

+
 (6.9) 

In the above equation C is the integration capacitor, gm1 is the transconductance of the 

input stage, and Cc1 and Cc2 are the compensation capacitors.  
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In the following simulations the DC gain of the amplifier is assumed to be 60 dB 

and the modulator sampling frequency is 160 MHz. All integrators use kp=0.1 and kz=5. 

To investigate the effect of each amplifier on the modulator performance, the closed- 

loop GBW of each integrator is swept between Fs/4 to 2Fs while the GBW of all other 

integrators is kept constant at 2Fs. For each point, the CT loop filter LF(s) has been 

discretized to compute the NTF. The simulation results are plotted in Figure 6.5 for all 

three amplifiers. Note that the NTF is shown in the anti-aliasing region of the STF, i.e. 

in the vicinity of Fs, for better visualization. According to the z-plane maps shown in 

Figure 6.5(a), the dual-feedback modulator is stable across the entire GBW sweep range 

of the 1
st
 amplifier. Figure 6.5(b) indicates that both STF and NTF exhibit more 

variation due to the second integrator’s GBW. Figure 6.5(c) reveals that the modulator 

stability is more sensitive to the GBW of the third integrator. However once stability has 

been achieved, the NTF and STF show only slight variation due to the speed of the 3
rd

 

amplifier. 

The series resistor Rz is traditionally used to eliminate the right-half-plane zero 

resulting from signal feed-through by the integration capacitor. From frequency 

compensation theory it is well known that a right-half-plane zero causes phase lag 

which for a CT-∆Σ loop translates  into excess loop delay. In the dual-feedback 

modulator, the resistor Rz of the 2
nd

 integrator is found to have a significant effect on 

stability and anti-aliasing. The simulation results when the parameter kz ( 1/ zR∝ ) of the 

second integrator is swept between 2 and 8 are shown in Figure 6.6. All other 

integrators are assumed to use kz=5. Finite amplifier GBW of 0.5, 1.0 and 1.5 are 

chosen for the 1
st
, 2nd and 3rd integrators, respectively. Anti aliasing improves by as 
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Figure 6.5: Effect of amplifier GBW on stability, NTF and STF; results shown for  

(a) first integrator,  (b) second integrator, and (c) third integrator. 
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Figure 6.6: (a) STF and NTF response to kz2 variation,  (b) Pole/Zero map. 

 

 

 

much as 14 dB as kz increases from 2 to 8. The minimum kz required for stability is 3 as 

shown in the Pole/Zero maps of Figure 6.6(b). The suitable kz is between 4 to 5. Any 

further increase of kz (smaller Rz’s) degrades the performance by resulting in high-Q 

poles and reduced maximum stable input range. This behavior is analogous to the effect 

of the nulling resistor in a miller-compensated amplifier [73]. In our simulations, kz = 5 

was identified as a suitable value for all integrators (i.e. Rz=R/5). 

 

6.1.2 RC Time Constant Variation  

The effect of time-constant variation on the third-order dual-feedback modulator 

was analyzed using the proposed integrator model and the set of GBW and kz parameter 

values obtained in the previous subsection. Figure 6.7 shows the magnitude of the 

largest pole of the modulator along with the estimated change in SQNR as a function of 

RC variation. The noise shaping shows 2.5 dB improvement when RC is reduced by  
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Figure 6.7:  Maximum pole radius and SNR variation versus RC tolerance. 

 

 

11% . Further reduction of RC, however, pushes the NTF poles outside of the unit circle 

and causes instability. Also the high-Q poles that are close to the unit circle cause NTF 

peaking at frequencies around Fs/2 and hence degrade STF filtering according to (5.5). 

A maximum radius of 0.75 will ensure minimal peaking and improved stability. This 

condition is met when RC variations are kept within -2% to 11%. In order to evenly 

spread variations across the range, all coefficients have been increased by the median of 

this range or 4.5 %. This results in better stability and less STF peaking at the expense 

of 1.8 dB reduction in SQNR. After coefficient re-adjustment, the maximum and 

minimum SQNR becomes, respectively, 87.7 dB and 83.3 dB across the range. These 

SQNR numbers were obtained from transient simulations that also accounted for limited 

integrator swings. The RC tuning needs to maintain the RC variation within +/- 6.5%. 

This can easily be implemented by a 4-bit trimmed integration capacitor.  
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Figure 6.8:  Active-RC implementation of the dual-feedback modulator. 

 

 

 

6.2 Circuit Design  

Figure 6.8 shows the circuit-level implementation of the dual-feedback 

modulator shown in Figure 6.1. Integrators are of active-RC type owing to their better 

linearity and higher signal swing. They also provide virtual ground nodes to properly 

sink the output signal of the current-mode DACs. All loop-filter capacitors are 

implemented using a bank of 16unit metal-insulator-metal (MIM) capacitors and are 

programmable by a 4-bit externally-applied code. The feedforward path designated by 

sa3 in Figure 6.1 has been implemented using the capacitor ratio C4/C3. Also using the  



 152 

SPICE
MODEL
IDEAL

P
H

A
S

E
  
(D

e
g
re

e
)

-100

-80

-60

-40

-20

0

20

40

60

80

100

10-3 10-2 10-1 100 101 102

FREQUENCY (MHz)

A
M

P
L
IT

U
D

E
 (

d
B

)

-60

-40

-20

0

20

40

60

80

14.8 15.1 15.4

-1

0

1
Zero Cross

3.6 3.8 4.0

55

65

75
Peak

 
 

Figure 6.9:  Bode Plot of the modulator filter, Spectre versus MATLAB model. 

 

 

 

integrator model explained in the previous section, amplifier GBW of Fs /2, Fs and 1.5 

Fs were selected for the 1
st
, 2

nd
 and 3

rd
 integrators, respectively, where Fs is the 160 

MHz sampling frequency. 

The magnitude response of the modulator filter is shown in Figure 6.9 and 

compares the transistor-level Spectre simulation with MATLAB results obtained using 

the proposed integrator model. The ideal response is also shown for reference. The 
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model predicts the peak and unity gain frequencies respectively with +0.2% and +%1.5 

accuracy. The model predicts the phase response with a good accuracy as well. Clearly 

the peaking frequency, which corresponds to the zeros of the NTF, is moved from its 

ideal location due to finite amplifier GBW. However, because of sufficient margin on 

SQNR compared to the target dynamic range (DR), no coefficient readjustment was 

deemed necessary   to re-center the NTF notch. 

The quantizer is a 4-bit flash type and includes a half-period delay. Delay 

compensation is performed with DT differentiation method as explained by equation 

(5.28) with parameter /2Tτ = . Both DAC1 and DAC2 use NRZ pulsing because of its 

lower sensitivity to clock jitter. Data-Weighted-Averaging (DWA) [13] is applied only 

to DAC1 for dynamic element matching while the mismatch effect of DAC2 is noise 

shaped by the first integrator. Component mismatch in the DACs of the delay 

compensation loop has negligible effect on the modulator performance. 

The 0.13 um CMOS process used for circuit design and implementation offers 

two threshold voltage options: nominal-VT with 500 mV and 550mV for NMOS and 

PMOS, respectively, and low-VT with 140mV and 160mV for N and P type devices. In 

the following sections we will present further details about the analog building blocks. 

 

6.2. 1 Amplifier  

The amplifiers are designed based on noise and signal swing requirements. 

Figure 6.10 shows the integrator output swings versus the frequency of the input signal. 

The results are obtained using behavioral transient simulations with a fixed input 

amplitude of -1 dBFS and sweeping the frequency from DC to Fs=160 MHz.  
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Figure 6.10: Integrator output swings versus frequency for -1 dBFS input level. 

 

The modulator coefficients define the output swing of all integrators which are 

all near the full-scale for a low-frequency input signal. The low-pass profile of the 

output swing proves useful in preventing THD degradation by integrator clipping in the 

presence of a strong interferer. The amplifier schematic is depicted in Figure 6.11. The 

two-stage amplifier uses cascoded transistors in the first stage to achieve high DC gain. 

The second stage is optimized for large voltage swings in order to maximize the full-

scale range of the ∆Σ-modulator, and subsequently reduce the power consumption. The 

gain provided by the 2
nd

 stage ensures a low signal swing at the output of the 1
st
 stage, 

which is crucial for proper operation of the cascoded transistors. The Vdsat used for the 

devices is around 100mV which add up to 600 mV in the stack that includes the 

degeneration resistors. The remaining headroom to 1.2V supply provides design margin 

and accommodates a small swing on the output of the 1
st
 stage. The gm1 of the first  
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Figure 6.11:  Schematic of the differential two-stage amplifier. 

 

stage of the opamp was set by thermal noise requirements while its bias current was 

determined to meet a target THD of -80 dB [51]. The input referred total noise of the 

amplifier is derived as 

 2
2

1 min1 1

8 ln( )
3

fN fth B
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K f
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g fC W L

ηη
− = +ɶ  (6.10)  

In the above equation fB is the signal bandwidth, fmin is the lower bound on the flicker 

noise bandwidth, Kf is the device flicker noise coefficient, W and L are device width and 

length respectively, ηth and ηf respectively are excess noise factors of thermal and 

flicker noise related to the opamp device parameters as 
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 (6.11) 

The factor of 2 in (6.11) accounts for the fully-differential nature of the amplifier. Also 

both equations simply show that increasing the source degeneration resistance will 
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decrease the total noise. However an upper bound for Rs exists based on the headroom 

limitations set by M6 , M7,8 and M9 devices.  

Due to the large voltage gain of the first stage, the noise contribution of the 

second stage becomes negligible and has been ignored in (6.11). Using the definition 

2 /m Dg I V= ∆ and taking the note of equal currents flowing through Rs resistor and 

NMOS/PMOS, load / input devices, equation (6.11) can be re-written based on the 

device gate overdrive voltage ( )GS TV V V∆ = −  and the degeneration resistor I.R drop 

( sV∆ ) relative values as 
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 (6.12) 

The designed amplifier has 1 7( / ) ( / ) 2s sV V V V∆ ∆ = ∆ ∆ =  and uses larger channel 

lengths for M7 and M8 NMOS load devices, so that the total flicker noise is dominated 

by the input differential pair.  

Due to limited headroom, a single current source (M2) is used for biasing the 

input pair. The tail current through M2 is kept relatively constant by adaptively biasing 

its gate using M3P, M3M and M4 replica devices. Frequency compensation using current 

feedback through the NMOS cascode devices (M6) allows us to circumvent the right-

half-plane zero problem [74]. The integrator’s closed-loop response is further adjusted 

by capacitors CC2 connected to the amplifier inputs. These capacitors also reduce the 

glitch energy and the switching noise of the current-mode DACs which particularly 

become highly signal-dependent when DWA is active.  
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Figure 6.12: Bode Plot of the first Integrator loop. 

 

The integrator noise and power requirement set the value of the input 

transconductor gm1. Knowing the required closed-loop bandwidth from the integrator 

modeling section, the values of CC1 and CC2 capacitors are picked for adequate phase 

and gain margin. The CC1 capacitor is minimized as much as possible to allow for 

increasing the size of CC2 without sacrificing the GBW. This practice guarantees 

maximum attenuation of the glitches produced by current-mode DAC during switching 

transitions. For maximum robustness the minimum CC1 is determined through AC 

simulations such that the phase margin of the integrator loop does not go below 70 

degrees.  The bode plot of the first-integrator loop using the two-stage amplifier is 

shown in Figure 6.12.  The 70 dB low-frequency attenuation of the integrator loop 

response is due to 70 dB DC gain of the amplifier. Also the unity-gain frequency is 87 

MHz. Phase and gain margins are 72 degrees and 28 dB, respectively. The 2
nd

 and 3
rd
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Figure 6.13: Noise transfer functions of the integrator inputs. 

 

 

stage amplifiers are scaled versions of the 1
st
 opamp by factors of 4 and 8, respectively. 

In the last integrator C4 serves also as CC2 which eliminates the need for this capacitor in 

the 3rd opamp. 

 

 

6.2.2 Modulator Noise Analysis and Scaling 

In the designed modulator the 2
nd

 and 3
rd

 integrators are scaled down to reduce 

the total power consumption. In each integrator, increasing all resistance values by a 

factor kr while decreasing all capacitors and all currents by the same factor, keeps the 

system dynamics unchanged.  This also allows reducing the amplifier power 

consumption by the same factor.  The scaling process exploits the noise shaping 

property of the internal nodes of a ∆Σ modulator. The closer to the quantizer, the more 

noise shaping occurs, as shown in the graphs of Figure 6.13. The input referred noise of 



 159 

the first-integrator will see the same STF as the input signal hence, the first integrator 

noise is not subjected to any noise shaping. As shown in Figure 6.13 the noise transfer 

functions of the 2
nd

 and 3
rd

 integrators include a zero at DC which effectively attenuates 

their 1/f noise, and thereby makes the first integrator dominant in the total modulator 

flicker noise. This simplifies the noise analysis by only considering the thermal noise 

contributions of all the integrators and separately adding the flicker noise of the first 

stage to the total noise.  The modulator input-referred thermal noise Snth-in can be 

expressed in terms of the individual integrator noise powers 1 3...nth nthS S as 

2 2 3 3
1 2 3

1 1 1 1

1 nth nth
nth in nth r r

nth nth

G S G S
S S k k

G S G S
−

 = + +   
 (6.13) 

In the above equation kr1 and kr2 respectively are the scaling factors of the 2
nd

 

and 3
rd

 integrators. Also G2/G1 and G3/G1 are normalized noise power gains obtained 

from numerical integration of the noise transfer functions of Figure 6.13 which, 

respectively, are 0.1 and 0.005 for the 2
nd

 and 3
rd

 integrators. 

The noise model of the first integrator is shown in Figure 6.14. The included 

noise sources are thermal noise of the input resistor, the resonator feedback resistor 

marked by g1, the noise current of the first feedback DAC, the noise of the amplifier, 

and finally the noise of the nulling resistor Rz1. The total input-referred thermal noise of 

the first integrator can be derived as (see Appendix C) 
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Figure 6.14: The noise model of the first integrator. 

 

In the above equation, gm is the input stage transconductance of the amplifier in the 1
st
 

integrator, ηth is the excess thermal noise factor defined in (6.12), înV is the single ended 

peak amplitude of the input signal, ∆VDAC1 is the gate overdrive of the DAC current 

source device and fB is the signal bandwidth. The noise contribution of Rz was found 

negligible due to the high impedance of the integrator feedback capacitor at baseband 

frequencies. Similarly, the effect of the integrator feedback impedance comprising C 

and Rz can be ignored in the input-referred flicker noise of the first integrator, which 

leads to the following equation 

 1
1 2

min 21 1

ln( )(1 )
fN f B

nflk
ox

K f R
S

f RC W L

η
≈ +  (6.15) 
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The ηf  is the excess flicker noise factor of the amplifier defined in (6.12). Also (6.14) 

and (6.15) can be rewritten in terms of the dimension-less coefficients of the modulator  

 1 1 1 12
1

1 1 1 1 1

ˆ8
8 1 (1 )

3 3
th in

nth B
m DAC

R g g b V a
S KT f

b b b g R V b

η  = + + + + ⋅   ∆ 
 (6.16) 

 1
1 2

min 11 1

ln( )(1 )
fN f B

nflk
ox

K f g
S

f bC W L

η
≈ +  (6.17) 

In the above equations R is the reference resistance of the active-RC integrator using the 

definition RC=Fs
-1

 where C is the reference integration capacitance. The values of the 

modulator coefficients b1, g1 and a1 are given in Figure 6.1. 

Using the noise model of the second integrator shown in Figure 6.15(a) the 

input-referred thermal noise of the second integrator is derived as 

 1 2
2

1 2 1

ˆ8
8 1

3 3
th in

nth B
m DAC

R c V a
S KT f

c g R V c

η  = + + ⋅   ∆ 
 (6.18) 

Note that we have not included the scaling factor kr2 since it is already included in the 

total modulator noise equation in (6.13). Using the noise model of the third-integrator 

shown in Figure 6.15(b) we derive the following input referred thermal noise power  

2
1 1 22 2

3 32 2
2 2 2 2

4

3 2

8 1 (1 ) (1 )
33

ˆ8 2

th
nth B

m

in

DAC

R cf cf c
S KT f a

c c c g Rc OSR

V a

V c

π η    = + + + + +    
+ ⋅ ∆ 

 (6.19) 

Note that in (6.19) the amplifier noise contribution is increased due to the noise 

gain of the feedback network formed by C and the input capacitor a3C. Also the delay 

compensation DAC3 has doubled in the number of elements, since it is made of two 

identical DACs, 3a and 3b with their outputs shorted at the amplifier summing nodes. 

Hence there is a factor of 2 in front of the coefficient a4 in (6.19).   
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Figure 6.15: Noise models of (a) 2nd integrator and (b) third integrator. 
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Examining the individual integrator noise equations in (6.16), (6.18) and (6.19) 

reveals that, the ratio of the noise powers given in (6.17) and (6.19) to the input stage 

noise power given in (6.16) depends on the coefficient of the modulator, provided all 

DACs use the same gate overdrive voltage and all integrators use the same amplifier 

structure with linear scaling. Hence the total modulator input-referred noise in (6.13) 

can be written as a function of an unknown resistor R 

 

1 1 1 12

1 1 1 1 1

2 2 3 3
2 3

1 1 1 1
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r r
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R g g b V a
S KT f

b b b g R V b

G S G S
k k

G S G S

η
−

  = + + + + ⋅   ∆ 

 × + +   

 (6.20) 

It is noted that the integrator scaling increases the resistor R by kr times and decreases 

the gm of the amplifier by the same factor, hence keeping the gmR term unchanged in the 

denominator of noise equations in (6.16), (6.18) and (6.19). On the other hand, the 

dominant third-order nonlinearity of the modulator, caused by the input stage of the first 

integrator is given in the literature [51] for a single-stage amplifier used in a single-bit 

CT-∆Σ modulator as 

 
2

2 3

ˆ
3 (1 )

64
in se in

DACm D in

V R
HD

Rg I R

−= +  (6.21) 

In the above equation în seV − is the single-ended peak of the input. Also the term inside 

the parenthesis includes the ratio of the input resistor to a resistive DAC’s output 

impedance and indicates the relative strength of the feedback to the input path in driving 

the amplifier inputs. Most multi-bit designs use current-mode feedback DACs in which 

case the ratio of the feedback to input coefficients can be used instead of resistive ratios 

in (6.21). Also multi-bit DACs have considerably smaller step size than 



 164 

the singe-bit ones, hence a normalization coefficient αM <1 is added to the equation as  

 
2

2 3

ˆ( )
3 (1 )

64

fbkM in se

inm D in

kV
HD

kg I R

α −= +∑  (6.22) 

In the above kfbk and kin respectively are coefficients of feedback and input paths 

attached to the summing nodes of the first amplifier. The summation is needed for cases 

which more than one feedback signal is injected to the first integrator. The αM parameter 

is obtained from behavioral simulations by observing the maximum step size at the 

quantizer output and dividing it by the full scale level. In our design with 16 level (4-

bits) DACs, the maximum step size was 4 LSB’s, hence αM=4/16 used in (6.22). 

Substituting 2 /m Dg I V= ∆ , and using the integrator model in Figure 6.14 , equation 

(6.22) can be re-written for the designed modulator as 

 
2

1 13
12 3

11

ˆ( )
3 [ (1 )]

16 ( )
M in se

m

V a g
HD b

bV g R

α − +
= +

∆
 (6.23) 

In the above equation, ∆V1 is the gate overdrive voltage of the input transistors. Note 

that equation (6.23) uses gmR instead of gmRin which also appears in the noise equations 

(6.16), (6.18) and (6.19). Hence for a known gate overdrive voltage the gmR term will be 

fixed and defined by the targeted HD3 according to (6.23). Also equation (6.23) 

assumes a single-stage amplifier (OTA). In [75] it is shown that in the case of a two-

stage miller compensated amplifier the HD3 will be less because of an increased 

effective gm by a factor of k=C/Cc, where C and CC are the integration and miller 

capacitors respectively. Based on (6.23) and the notion of effective gm, a simulation of 

the power consumption can be setup by sweeping the independent variables kr2, kr3 , and 

∆V1, to determine R and gm values that minimize the total power consumption. 
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Figure 6.16: Power optimization by (a) sweeping gate overdrive and scaling factor of 

the 2
nd

 integrator, (b) sweeping scaling factors of 2
nd

 and 3
rd

 integrators. 
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The 3D plots in Figure 6.16(a), and (b) show power consumption versus gate 

overdrive voltage and kr2 and kr3 scaling factors. The results show that the third 

integrator can be scaled more aggressively as its noise is shaped by modulator NTF. The 

optimum scaling factors are identified as 4 and 17 for the second and third integrators, 

respectively. Scaling by 17 is not practical due to physical design rule violations in the 

layout by hitting the minimum size of the capacitors. Instead a kr3 = 8 was used for the 

scaling of the third integrator.  Power is estimated from solving equations (6.20) and 

(6.23) in terms of R and gm. The bias current ID is subsequently calculated according to 

2 /m Dg I V= ∆ . The total quiescent current of the designed amplifier is related to the 

input stage transistor bias current ID as IT =10 ID. Therefore the total loop filter power 

consumption including all three amplifiers and DACs is estimated as: 

 2 4
1

2 3 2 3

ˆ1 1 2 2
10 (1 ) ( )DD in se

DD D
r r r r

V V a a
P V I a

k k R k k
−= + + + + +  (6.24) 

The second term in (6.24) accounts for the static current of the feedback DACs. The 

power of the quantizer and the bias generator is not included in (6.24). This is a constant 

additive term which does not affect the optimal parameters obtained from the 

simulations shown in Figure 6.16. Also, equation (6.24) is only an estimate of the 

modulator power consumption, since it is relying on approximate equations such as 

(6.23). The transistor level parameters such as ID, gm and ∆V, obtained from solving 

(6.24) were used as a guideline in the circuit design process. The power consumption of 

the designed modulator closely tracked the estimated value by (6.24), although SPICE 

simulations showed slightly lower HD3 than the nonlinearity predicted by (6.23). 
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Figure 6.17:  The structure of the 4-bit current mode DAC. 

 

 

6.2.2 Current Mode DAC 

The 4-bit current-steering DAC has the structure shown in Figure 6.17, and is 

composed of 15 unit current sources with differential current switches and switch 

drivers. The transistor-level schematic of one slice of the DAC is shown in Figure 6.18. 

When the data input toggles, the differential switch driver shown in Figure 6.18(a) 

generates overlapping pulses on the rising edge of the clock and holds the data until the 

next clock cycle. The current switches include dummy elements for charge injection 

cancellation. The schematics of the current cell and the biasing circuit are shown in 

Figure 6.18(b) and (c), respectively.  The mismatch error of the 1
st
 and 2

nd
 feedback  
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Figure 6.18:  Schematic of the current-mode DAC: (a) input latch and switch driver, (b) 

current source and the current switch, (c) bias generator and noise-filter. 

 

DACs is first-order noise shaped by the DWA and first integrator, respectively.  

DAC behavioral simulations, as outlined in chapter 3, were employed to 

determine the required matching of the unit current sources. The simulation results are 

shown in Figure 6.19. To guarantee a minimum SNDR of 81 dB, the W and L of the 

NMOS current source (M1) were selected for 6-bit (i.e. 6( / ) 2I Iσ −∆ =  ) matching 

according to [53] 
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 (6.25) 

In the above equation I = IDAC /16 is the unit element current and constants AVT and Aβ 

are transistor mismatch parameters provided by the foundry.  
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Figure 6.19:  Behavioral simulation of modulator SNDR versus DAC unit element 

mismatch; (a) DAC1 and DAC2  ; (b) DAC3a and DAC3b .  
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Increasing the gate overdrive voltage (∆VDAC = VGS -VT) of the current source 

reduces the required device area for a given matching level. This practice also results in 

lesser noise contribution by DAC according to (6.16). For further reduction of the 

output noise, a large time-constant RC-filter is placed between the bias generator and 

the gate of the current source. This prevents propagation of the noise of the biasing 

device M1B to the output. The cascode transistor M2 isolates the large capacitance of 

the current source device from the output node. Moreover, using regulated cascode 

biasing by M4 ensures a high output resistance for the unit current cells and improves 

the linearity.  

Bypass capacitors are added to the gate of the cascode transistors to attenuate the 

coupled transitions through gate-drain parasitic capacitance.  To increase the current 

copy accuracy, a low-power opamp is used in the bias generator to compensate for the 

voltage drop across the switch transistor (M3). 
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Figure 6.20:  Comparator used in the Flash ADC: (a) preamplifier, (b) latch. 

 

 

6.2.3 The 4-bit Flash ADC  

The quantizer used in the modulator is a 4-bit Flash ADC. It consists of 15 

comparators and a 16-element resistor string driven by a differential 600 mV +/- 150 

mV external reference. The thermometer-coded output of the flash ADC is fed into a 

DWA block and then into the first-stage DAC. The second and third stage DACs are 

directly driven by the Flash quantizer. To correct for potential bubble errors in the Flash 
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ADC, the binary outputs are generated by a Wallace-Tree encoder made of 11 full-

adders. The encoder is placed outside the modulator loop and is interfaced to the digital 

output pads. The schematics of the core building blocks of the quantizer and the 

thermometer-to-binary encoder are shown in Figures 6.20 and 6.21 respectively. The 

encoder data is reused in the DWA block for dynamic element matching of the main 

feedback DAC.  

Each comparator consists of a pre-amplifier and a latch. The data in Figure 6.22 

show the mean and standard deviation of the SNDR performance when the comparator 

offset standard deviation is varied from 0.1 to 1.0 LSB (LSB = 2
-4

 full-scale). A larger 

offset translates into lower mean and minimum (-3σ) SNDR due to an increasing in the 

quantizer nonlinearity. A standard deviation of a quarter-LSB for offsets (σ = 2
-6

) will 

ensure around 84 dB and 81 dB average and worst-case SNDR, respectively.  These 

values are acceptable for the targeted performance of 78 dB. Subsequently, the 

preamplifier devices were sized for σ =6 mV random offset. This design target was 

verified by transistor-level Monte-Carlo simulations, as shown in Figure 6.23.  Meeting 

the comparator offset requirement calls for large enough device sizes which result in 

large parasitic capacitance at the drain node of the input transistors. Small-size cascade 

transistors M2P and M2M (see Figure 6.20) isolate the pre-amp output from this 

parasitic capacitance and increase the bandwidth. 

To avoid the issue of comparator meta-stability [31], two latches are cascaded at 

the output and the preamplifier gain-bandwidth product is made quite large.  Long 

transient simulations followed by spectral analysis indicated that a 320 MHz bandwidth 

and a minimum DC gain of 5 for the pre-amplifier provide sufficient margin  
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Figure 6.21:  Wallace-Tree encoder used for thermometer-to-binary conversion. 

 

for a safe operation. A comparison of the modulator output spectrum and its SNR is 

shown in Figure 6.24 for two different pre-amp bandwidths of 200 and 320 MHz. 

Another critical issue related to the comparator design is the excess loop delay 

which can be caused by the finite bandwidth of the preamplifiers. This is shown 

conceptually in Figure 6.20 by a sinewave and its delayed version, where the latch 

strobe clock is delayed by the same amount to allow capturing the right sample. The 

relatively wide bandwidth of the pre-amplifier makes the group delay almost constant 

for the in-band signals. We have employed a replica pre-amp for delay generation to 

ensure supply, temperature and process corner tracking. A challenge associated with this 

technique is the increased speed requirement for the latch. Since the total delay of the 

comparator and DWA combination needs to be confined in half-a-sampling period,  
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Figure 6.22: Effect of comparator offset standard deviation on modulator SNDR. 

 

 
Figure 6.23: Monte-Carlo simulation of comparator input referred offset. 
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delaying the strobe clock, subtracts from the response time available to the latch. In 

other words, the bandwidth of the pre-amp is relaxed at the expense of increasing the 

latch speed requirements. In the designed modulator, the delays of the comparator pre-

amplifier and latch when resolving a ¼ LSB input were  500 ps and 750 ps respectively. 

Accordingly the latch strobe clock was delayed by 500ps to cover for the pre-amplifier 

delay. Also the DWA data path added another 900 ps delay, making the total latency of 

the feedback path 2.15 ns. This delay is sufficiently less than the required half sampling 

period of 3.125 ns 

The total power consumption of the designed Flash ADC is 1.3 mW which is 

divided as 0.98 mW static and 0.32 mW dynamic power from a 1.2 V supply. In 

addition, a 31 uA current flows into the resistor string from a 0.3 V external reference 

buffer. 

Frequency (MHz)
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Figure 6.24:  Simulated output spectrum versus preamplifier bandwidth. 
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Figure 6.25:  Microphotograph of the 5MHz CT-∆Σ test chip. 

 

 

6.3 Measurement Results 

A prototype chip was fabricated in a 0.13um CMOS technology and 

encapsulated in a 40-pin plastic package. All the pins include ESD protection. The 

micro-photograph of the die is shown in Figure 6.25. The chip occupies 0.56 mm2 

active area. A single 1.2 V supply is used for both analog and digital blocks. The test 

and measurement setup is shown in Figure 6.26. The modulator is externally clocked at 

160 MHz. A 1.1 MHz sinewave was used for SNR/SNDR measurements and an 

additional 1.3 MHz tone was employed for two-tone measurements.  Figure 6.27 shows 

the measured SNR / SNDR performance. 
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Figure 6.26:  Test setup used in the measurements. 
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Figure 6.27:  Measured SNR/SNDR performance versus input amplitude. 
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Figure 6.28:  Measured output spectrum with -3dBFS tone at 200 KHz. 

 

 

The modulator remains stable up to -0.5 dBFS where the SNR increases linearly 

by increasing the input amplitude. The modulator achieves 69.5 dB peak SNDR and 

74.5 dB peak SNR for -3 dBFS and -0.5 dBFS input levels, respectively. The output 

spectrum for a -3dBFS input tone at 200 KHz is shown in Figure 6.28. The second-order 

harmonic distortion limits the SFDR of the modulator to 74 dB, while the third 

harmonic is at -87 dBFS for a -3 dBFS input signal. In the two-tone tests using -6 dBFS 

and -9 dBFS input levels, the modulator exhibits IM3 of 81 dB and 78 dB, respectively. 

In both cases, IM2 remains unchanged at -74 dBc as shown in Figure 6.29 plots. Both 

tests identify second-order harmonic distortion as the dominant source of nonlinearity. 

Post-fabrication study has identified the input resistor mismatch and layout asymmetry 

in the CMFB of the first amplifier as the root cause.  
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Figure 6.29:  Two-tone test results with (a) -6 dBFS and (b) -9 dBFS inputs. 
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Figure 6.30:  Measured output spectrum with -3dBFS tone at 200 KHz. 

 

 

 

The modulator was designed for a target dynamic range of 76 dB while 

accounting for the device noise, the quantization noise, the noise and nonlinearity by 

DAC element mismatch, and nonlinearity caused by amplifier input stage and quantizer 

random offset. For a -3 dBFS input, the measured SNDR is 69.5 dB. The expected 

SNDR based on simulations was 70.2 dB after including measured HD2 and HD3 of, 

respectively, -77 and -87 dBFS. The 0.7 dB difference is attributable to unaccounted 

noise sources like, supply noise, unfiltered noise of the signal source, noise coupling 

through the test bench cables, and clock jitter. The estimated power of these extra noise 

sources is -81.7 dBFS.  
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Table 6.1:  Performance Summary and Comparison 

 

Specifications Ref.  [76] Ref. [77] Ref.  [78] Ref. [79] This work 

Architecture FF-FB FF 
FF + Time 

Encoding 
FF-FB 

Dual-

Feedback 

Bandwidth (MHz) 20 10 20 25 5 

Clock Freq. (MHz) 640 250 320 500 160 

SNDR / SNR (dB) 74 / 76 65  /  68 61 / 63 63.5 / 64 69.5 / 74.5 

Dynamic Range (dB) 80 71 63 70 76 

Power (mW) 20 18 7 8.5 6 

Anti-Aliasing (dB) N/A N/A N/A N/A 70 

STF OOB Peaking Yes Yes Yes Yes No 

Process Technology 130nm 130nm 65 nm 90 nm 130 nm 

Die Area (mm
2
) 1.20  1.35  0.08  0.2  0.56 

FOM (fJ/conversion) 122 486 170 138 246 

* FOM=Power / (2
. 
BW

.
2

ENOB
)  

The STF was characterized by sweeping the input signal frequency from 250 

KHz to 155 MHz while the input level was -6 dBFS. Anti-aliasing is measured by 

applying a -6 dBFS sine wave at 1.1 MHz superimposed on a -6 dBFS out-of-band tone 

with frequency in the range of 155 to170 MHz.. The measured STF is plotted in Figure 

6.36 which shows a low-pass response with maximum out-of-band peaking of 0.1 dB at 

10 MHz and a minimum anti-aliasing of 70dB at 165 MHz. The measured power 

consumption is 6 mW from the 1.2V supply. A summary of the measured performance 

is provided in Table 6.1. The figure-of-merit (FOM) is 0.123 / 0.246 pJ/conversion, 

based on the measured DR / SNDR respectively. Table 6.1 also provides a comparison 

of this work with current state-of-the-art technology [77-79].  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

This work aimed at exploring new ways of improving power efficiency and 

frequency response of CT ∆Σ modulators. The results of this research are three novel 

architectures that demonstrate good potential for low-power and wideband A/D 

conversion in wireless applications, e.g., 3G and 4G handsets.  

The first architecture proposes the use of a power efficient quantizer like 

successive-approximation (SAR) instead of the commonly used Flash quantizer.  The 

SAR architecture allows for increasing the quantizer resolution with smaller power and 

area penalty than the flash structure. The reduced out-of-band quantization noise of a 

higher resolution SAR enables using more aggressive noise shaping at lower over 

sampling ratios which is key for wideband ∆Σ A/D conversion.  

The intrinsic latency of a SAR quantizer is a major obstacle that prevents its use 

in delay-sensitive CT ∆Σ modulator loops. In this work, the latency issue is addressed 

by employing a faster quantizer clock in addition to a direct feedback path to the 

quantizer input for full-period excess-loop-delay (ELD) compensation. The use of 

switched-capacitors (SC) technique allows for incorporating the delay-compensation 

DAC into the SAR quantizer which obviates the need for an explicit summing amplifier 

needed in classical ELD compensation.  

A SAR quantizer with full-period conversion latency leaves no time for 

dynamic-element-matching (DEM), a popular means for ensuring DAC linearity. 

Although calibration could be an alternative in this case, we proposed the partial-data-
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weighted-averaging (Partial-DWA) technique as a purely digital solution with less 

complexity. The Partial-DWA exploits the serial operation of a SAR to avoid the 

excess-loop-delay (ELD) problem while providing adequate linearity improvement.   

As a proof of concept, a first-order CT-∆Σ modulator with 5-bit SAR quantizer 

is designed and implemented in a 130 nm CMOS process which achieves 62 dB 

dynamic range over 1.92 MHz signal bandwidth meeting the requirements of the 

WCDMA standard. The prototype modulator draws 3.1 mW from a single 1.2 V supply 

and occupies 0.36 mm
2
 of die area. 

The second part of this research addresses the issue of STF out-of-and peaking. 

The STF peaking is troublesome in receiver design as it puts stringent requirements on 

the analog filters preceding the ADC. A new design methodology has been proposed to 

synthesize low-pass feedforward CT-∆Σ modulators with peaking-free STF and without 

constraining the NTF. Based on the proposed method, the STF peaking of a feedforward 

modulator can ideally be eliminated by adding extra feed-in paths to all integrator 

inputs. However, this modified feedforward structure exhibits significant sensitivity  

such that STF peaking reappears and anti-aliasing degrades in the presence of 

coefficient variation due to component mismatch. 

Two new architectures have been proposed which need fewer coefficients than 

the conventional feedforward structure and allow for implementing a low-pass STF. The 

first one, namely dual-feed-in topology requires only two feed-in paths for modulators 

of any order while using a single overall feedback. Anti-aliasing and out-of-band 

peaking show considerable improvement over the feedforward structure, although there 

remains some residual STF peaking and anti-aliasing degradation. For further 
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improvement the dual-feedback topology has been proposed which shows significantly 

better STF behavior compared to the dual-feed-in and traditional feedforward structures. 

A comprehensive integrator model is proposed which allows analyzing various 

non-idealities encountered in real implementations such as, amplifier limited unity-gain-

bandwidth (UGBW), amplifier parasitic input capacitance, series resistance in the 

feedback path, amplifier input-stage nonlinearity, capacitive inputs used for combining 

integration and addition in one stage. Based on this model the effect of amplifier 

UGBW and the integrator feedback resistance has been studied in a third-order dual-

feedback modulator. The results show that the dual-feedback structure needs relatively 

small amplifier bandwidth in the first integrator for a stable and acceptable NTF and 

STF performance. Hence the power consumption of the dominant first-integrator can be 

reduced because of the reduced bandwidth requirements. The integrator model was 

essential to performing behavioral simulations and following out a top-down design 

approach in order to optimize the performance of the fabricated ∆Σ modulators. 

For proof of concept, a third-order dual-feedback ∆Σ modulator was 

implemented in a 130 nm CMOS process. The modulator achieves 76 dB of dynamic 

range over 5 MHz signal bandwidth which meets the requirements of a DVB-H receiver 

or an LTE receiver using up to 10 MHz RF bandwidth. The modulator shows 77 dB 

anti-aliasing and negligible worst-case STF peaking of 0.1 dB.  The measured power 

consumption of the modulator is 6 mW from a single 1.2 V and the die area is 0.56 

mm
2
. 
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7.1 Contributions 

The contributions of this work can be summarized as follows 

• Proposed a CT ∆Σ modulator architecture based on the power efficient SAR 

quantizer with built-in delay compensation, hence eliminating the explicit analog 

adder from the quantizer front-end and saving power and area. 

• A novel 5-bit SAR A/D converter architecture with split 3bit-2bit DAC structure 

that reduces the total capacitance of the SAR by a factor of 4. In addition to 

immediate savings in chip area, the reduced input capacitance of the SAR can be 

leveraged to reduce the power consumption of the last integrator driving the 

quantizer. 

• The partial-DWA technique is proposed for dynamic-element-matching in the 

SAR based modulator architectures. This DEM approach, despite conventional 

DWA, does not cause ELD problem, although at the expense of slight 

performance drop. 

• A digital DLL based on a novel current-controlled delay element is designed to 

synthesize the high-speed clock of the SAR quantizer from the modulator 

sampling clock. This DLL uses a 6-bit current-mode DAC to control its tapped 

delay line and features a first-order digital low-pass filter in its control loop. The 

novel fully-differential delay element shows low sensitivity to supply noise, and 

can maintain the 50% duty cycle of its input by ensuring equal rise and fall 

times.  

• Designed, implemented and tested a proof of concept first-order CT delta-sigma 

modulator based on the proposed SAR based architecture with a 1.92 MHz 
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bandwidth and 62 dB dynamic range and 3.1 mW power consumption for a 

WDCMA application. 

• Proposed a methodology for synthesizing a low-pass and peaking free STF for 

feedforward modulators without constraining the NTF.  

• Proposed the dual-feed-in modulator architecture with reduced sensitivity to 

coefficient mismatch. The dual-feed-in topology which needs a single feedback 

path is particularly suitable for multi-mode receiver applications where a 

reconfigurable DAC design becomes too complicated. 

• Proposed the dual-feedback modulator architecture with significantly less 

sensitivity to coefficient mismatch. The sensitivity of a dual-feedback structure 

resembles that of a feedback structure with the use of only two feedback paths 

for any modulator order. 

• Proposed a new and comprehensive integrator behavioral model which allows 

for modeling non-idealities such as amplifier limited UGBW and DC gain, the 

effect of parasitic input capacitance, the effect of switch resistance in the 

feedback path, and amplifier input stage nonlinearity. The model works with 

integrators having capacitive input paths where amplifier serves in part as an 

analog adder. 

• Developed a methodology to determine the amplifier GBW requirements based 

on the use of the proposed integrator model and applied it to the third-order 

dual-feedback modulator. The results can be used to design stable dual-feedback 

CT ∆Σ modulators without overdesigning the amplifier bandwidth. 
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• Designed, implemented and tested a proof of concept third-order CT dual-

feedback modulator with 5 MHz signal bandwidth and 76 dB dynamic range and 

6 mW power consumption for a DVB-H receiver application. 

 

7.2 Future Work 

In this work we introduced three new CT ∆Σ modulator architectures and 

successfully implemented and tested two prototype designs. For further investigation 

and future work the following research topics are suggested 

• Using asynchronous design for the SAR quantizer. The power efficiency of the 

SAR based architecture can be improved by employing an asynchronous design 

instead of the synchronous approach in the implemented modulator. The 

asynchronous design allows for running the SAR quantizer off the modulator 

sampling clock, hence obviating the need for a DLL in stand alone modulators. 

Also the combination of asynchronous operation with sub-radix-2 (non-binary) 

SAR algorithm can alleviate the element mismatch issue and improve the 

quantizer linearity. 

• Using current-mode SAR architecture. Instead of using a switched capacitor 

SAR, a current-mode SAR can be employed and easily combined with the 

current-mode ELD compensation DAC, again without requiring an analog 

summer. This will potentially allow increasing the speed of the quantizer and 

achieve higher modulator bandwidths.  Also it is well known that current-mode 

designs have better potential for low-voltage, which makes them attractive for 

future generations of process nodes with reduced supply voltage. 
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• Using background calibrated feedback DACs instead of the Partial-DWA. The 

use of Partial-DWA involves trading-off the ELD with required initial matching 

of the DAC unit elements. As a result the area of a DAC with Partial-DWA 

becomes larger than the one that uses full DWA, although none of the 

conventional DEM techniques can be used due to adding to ELD. Background 

calibration of the DAC elements results in smaller DAC size, without causing 

any delay in the modulator loop.  

• Investigating the effect of amplifier UGBW in dual-feed-in modulators.  The 

proposed integrator model provides a unique opportunity for investigating the 

effect of amplifier dynamics on any structure. Of particular interest would be a 

comparison of amplifier requirements in dual-feed-in and dual-feed-back 

structures. 

• Design and implementation of a multi-mode modulator based on the dual-feed-

in or dual-feedback architectures. Multi-mode and reconfigurable design of the 

CT ∆Σ modulators has become a trend recently. The dual-feed-in and dual-feed-

back architectures provide a unique opportunity for these applications for two 

reasons. First and foremost they provide a robust low-pass STF with no out-of-

band peaking which is an important and desirable feature in multi-mode 

applications. Secondly the modulator area will be considerably smaller since 

reconfigurable DACs tend to be complex and bulky. 

• Using SAR or asynchronous SAR quantizer in conjunction with the dual-

feedback or dual-feed-in architectures. Combining the SAR based modulator 

idea with robust STF dual-feed-in or dual-feedback architectures can further 
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improve the power efficiency of the modulators. Of particular interest would be 

to investigate the effect of a full-period delay of SAR quantizer on the required 

bandwidth by the amplifiers. 

• Design of dual-feed-in or dual-feedback modulators employing background 

calibrated DACs. The increased DAC switching activity by employing DWA or 

other DEM techniques, introduces signal dependent glitches to the sensitive 

integrator summing nodes. Using background calibrated DACs is one way to 

avoid this issue which can result in improved SNDR performance. 
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APPENDIX A 

 

ORDER OF THE ANTI-ALIASING FILTER 

 

The proof of equation (2.3) is provided in this appendix. Figure A.1 shows an in-

band tone, an alias tone and a low-pass anti-aliasing filter. Before filtering the input and 

alias amplitudes are PSIG and PBLK respectively. Assuming a Butterworth characteristics 

the magnitude response of the filter with corner frequency fb (signal bandwidth) can be 

written as 

 
2 2

2

1
( ) ( / )

1 ( / )

N

N
bButterworth

b

AA f f f
f f

− = ≈  + 
 (A.1) 

The dB magnitude of the filter is obtained from the above equation as 

 10( ) 20 log ( / )dB bAA f N f f= −  (A.2) 

After sampling the attenuated alias tone will be folded back to the signal band, 

producing an spurious tone with the dB amplitude of 

 1020 log ( / )spur ALS ALS bP P N f f= −  (A.3) 

 

(d
B
)

(d
B
)

 

Figure A.1: Anti-aliasing filter and alias tone shown (a) before and (b) after sampling. 

 



 191 

The minimum ant-aliasing occurs at frequency fALS = Fs - fb . Therefore the worst case 

spurious power in dB becomes 

 1020 log (2 1)spur ALSP P N OSR= − −  (A.4) 

Referring to Figure A.1(b) the equation of the SFDR can be written as follows 

 
1020 log (2 1)

spur SIG

SIG ALS

P SFDR P

SFDR P P N OSR

+ =

⇒ = − + −
 (A.5) 

 Using the above equation the order of the low-pass filter is estimated as  

 
1020 log (2 1)

ALS SIG
Butterworth

P SFDR P
N

OSR

 + −
=  

−  
 (A.6) 

In the above  x  indicates the round up to +∞  (ceil) operation.  Assuming a full-scale 

signal with PSIG = 0 dB, the filter order becomes 

10 220 log (2 1) 6.02 log (2 1)
ALS ALS

Butterworth

P SFDR P SFDR
N

OSR OSR

   + +
= =   

− −      
 (A.7) 

It is noted that the SFDR is usually required to be higher than the ADC dynamic range, 

so that the performance degradation due to aliasing is minimized. Therefore when 

assuming DR = SFDR the above equation only predicts the minimum order of the filter.  
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APPENDIX B 

 

FULL-PERIOD QUANTIZER DELAY COMPENSATION 

 

The proof of equation (4.6) is provided in this appendix. Suppose the goal is to 

find a transfer function H
’
d(z) and a scaling factor kd such that it satisfies the following 

equation  

 1 '( ) [ ( )]d d dH z z k H z−= +  (B.1) 

In the above, z
-1 

is the full period delay of the quantizer, kd is the delay compensating 

direct feedback and Hd(z) is the ideal DT loop transfer function which can be calculated 

knowing the modulator NTF. We assume that both Hd(z) and H’d(z) are proper fractions 

(i.e. numerator order is less than denominator) and can be expressed in general form as 
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In the above values of a
’
i and b

’
i are unknown. Plugging (B.2) and (B.3) in (B.1) yields 
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 (B.4) 

The equality in (B.4) can be re ordered as  
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1z− 1
z
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Figure B.1: (a) 2

nd
-order CT-∆Σ modulator using SAR. (b) DT equivalent. 
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To satisfy (B.5) both denominators and numerators must be equal. From the equality of 

denominators  
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Which means Hd(z) and H
’
d(z) have the same poles by having the same denominators. 

Also equating numerators results in 
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 (B.7) 

The above equation is the same as equation (4.6) in chapter 4. We use (B.7) 

Example: 

Consider the second order CT delta-sigma modulator shown in Figure B.1 

with unknown coefficients k1 , k2 and kd. The goal is to calculated these coefficients  
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such that the modulator shows the classical 2
nd

 order noise shaping  of  1 2(1 )z−− . 

Knowing the NTF, the ideal DT loop filter is obtained as 

 ( )1 '
2

1 2 1
( ) 1 ( )

( ) 2 1
d d d

z
H z z k H z

NTF z z z
−− +

= − = = +
− +

 (B.8) 

Using (B.7) the coefficients of the delay-compensated loop filter are obtained as: 
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Assuming the CT prototype uses an NRZ DAC with a zero-th order hold (ZOH) 

transfer function and has an outer loop TF as ( )1 2
2

k k

ss
+ , the unknown coefficients 

can be found by applying MATLAB’s control toolbox function ‘d2c’ to the H’d(z) as:    

 ( )1 2 '
2 2

(2.5 1)
d2c( ( ), ' ')d

k k s
H z zoh

ss s

− +
− + = =  (B.10) 

which yields 1 2.5k =  and 2 1k = . 
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APPENDIX C 

 

ACTIVE-RC INTEGRATOR INPUT REFFERED NOISE 

 

Let’s consider the input referred noise of a general form integrator as shown in 

Figure C.1. This integrator includes a current mode DAC attached to amplifier summing 

node, a main resistive input path shown by R1 and a secondary resistive input by R2, and 

a nulling resistor Rz at the feedback path. Let’s ignore the noise contribution of the 

current-mode DAC for now. The input referred noise of this integrator (without DAC) 

can be written as   

 
2 2 2

2 3 42 2 2 2 2
1 2 3 42

1 1 11

1
1ni n n n n

n

G G G
v v v v v

G G Gv

    = + + +        
ɶ ɶ ɶ ɶ ɶ

ɶ
   (C.1) 

In the above Gi is the voltage gain of the i-th noise source to the output and the ratios of 

Gi to G1 are obtained from the circuit shown in Figure C.1 as 
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 (C.2) 

An interesting note to take from the above equation is that the noise gain ratio is equal 

to the inverse of the impedance ratios for a given noise source.  

Using the definitions in (C.2) the power of the input referred thermal noise can 

be expressed as 
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Figure C.1: The noise model of an Active-RC integrator. 
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 (C.3) 

The first noise contribution (Part-A) is related to thermal noise of the input 

resistors R1 and R2 which becomes 

1 1
1 1

2 20

8 (1 ) 8 (1 )
Bf

in A B

R R
S KTR df KTR f

R R
− = + = +∫  (C.4) 
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Also the second noise contribution (Part-B) is related to the thermal noise of the 

feedback resistor Rz . We use the following definitions to solve for part-B in (C.3)  

1 1
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s b

b
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C f R b OSR
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− −
−
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 (C.5) 

Therefore the input referred noise power due to Rz becomes 
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In solving the integral in (C.6) we used the approximation 1 3tan ( ) / 3x x x− ≈ −  for 

small x. Equation (C.6) indicates that the noise contribution of the feedback resistance 

becomes negligible at high OSRs. Nonetheless the effect of Rz needs to be carefully 

examined at low-OSR designs. In our design with OSR=16, k1=0.37, R1=R/0.37, and 

Rz=R/5, the normalized contribution of Rz (with respect to R1 ) is 0.007 which can be 

easily ignored.  

Part-C of equation (C.3) indicates the thermal noise contribution of the amplifier 

which can be simplified as 
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 (C.7) 

The above equation shows that the amplifier input referred noise depends on impedance 

network comprising the R1 || R2, in parallel with the feedback impedance. Clearly the 
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effect of the feedback impedance depends on OSR which can become significant at low 

oversampling rates.  In our design with OSR=16, b1=0.37, R1=R/0.37, R2=R/0.04 and 

Rz=R/5, the term including the feedback impedance effect is equal to 0.11 which can be 

ignored compared to R1 and R2 contributions. Assuming negligible contribution by 

feedback network, the part-C noise power is approximated as 
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 The combination of (C.5), (C.6) and (C.7) leads to the following total input 

referred noise power (again without accounting for DAC) 
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The noise contribution of DAC can be calculated by assuming that all noise 

current is integrated by the feedback capacitor. In this case the total noise current can be 

expressed in terms of the input resistor R1 and single-ended peak voltage of the input as 

2 22
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2 2
4 4

3 3DAC DACDAC DAC
n nB m B mi KTf g v KTf g R= ⇒ = ⋅ɶ ɶ  (C.10) 

The gmDAC in the above is related to the single-ended full-scale DAC current which is 

directly proportional to the feedback coefficient a1 , the single-ended peak of the input 

voltage and the input resistance value R1 and can be defined as 
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Hence equation (C.10) can be re-written as 
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It is noted that the above equation assumed a very large gain-bandwidth for the 

amplifier. In reality that is not the case, hence not all noise current gets integrated by the 

feedback capacitor. Therefore (C.12) is pessimistic and predicts the upper bond of the 

DAC noise. Adding (C.12) to (C.9) the total input referred noise power is obtained as  
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With further simplification, assuming the contribution of Rz and the effect of 

feedback impedance can be ignored the input referred thermal noise power of the first 

integrator becomes  
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