2018/10/29 New Software Continuously Scrambles Code to Foil Cyber Attacks | Data Science Institute

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Data Science Institute

ABOUT CENTERS ACADEMICS RESEARCH ENTREPRENEURSHIP INDUSTRY

New Software Continuously Scrambles Code to Foil Cyber Attacks
£ sHARE K1V El. (https://www.addthis.com/bookmark.php?v=2508pub=xa-4a9be9465d42784c)
Technique Sets a Deadline on Hackers to Severely Limit Chances of Success

As long as humans are writing software, there will
be coding mistakes for malicious hackers to exploit.
A single bug can open the door to attackers
deleting files, copying credit card numbers or
carrying out political mischief.

A new program called Shuffler
(http:/www.cs.columbia.edu/~junfeng/papers/shuffler-
0sdi16.pdf) tries to preempt such attacks by allowing
programs to continuously scramble their code as
they run, effectively closing the window of
opportunity for an attack. The technique is
described in a study

(http://www.cs .columbia.edu/~junfeng/papers/shuffler-
0sdi16.pdf) presented this month at the USENIX
Symposium on Operating Systems and Design
(https://www.usenix.org/conference/osdi16) (OSDI) in
Savannah, Ga.

“Shuffler makes it nearly impossible to turn a bug
into a functioning attack, defending software
developers from their mistakes,” said the study’s
lead author, David Williams-King, a graduate
student at Columbia Engineering
(http://engineering.columbia.edu/) . “Attackers are unable to figure out the program’s layout if the code keeps changing.”

Code-shuffling software developed at Columbia effectively eliminates opportunities for hackers
to reuse code to take control of a machine.

Even after repeated debugging, software typically contains up to 50 errors (http:/www.mayerdan.com/ruby/2012/11/11/bugs-per-line-of-code-ratio) per 1,000 lines
of code, each a potential avenue for attack. Though security defenses are constantly evolving, attackers are quick to find new ways in.

In the early 2000s, computer operating systems adopted a security feature called address space layout randomization, or ASLR. This technique
rearranges memory when a program launches, making it harder for hackers to find and reuse existing code to take over the machine. But hackers soon
discovered they could exploit memory disclosure bugs to grab code fragments once the program was already running.

Shuffler was developed to deflect this latter style of code-reuse attack. It takes ASLR’s code-scrambling approach to the extreme by randomizing small
blocks of code every 20 to 50 milliseconds, imposing a severe deadline on would-be attackers. Until now, shifting around running code as a security
measure was thought to be technically impractical because existing solutions require specialized hardware or software.

“By the time the server returns the information the
attacker needs, it is already invalid—Shuffler has already
relocated the respective code snippets to different
memory locations,” said study coauthor Vasileios
Kemerlis, a computer science professor at Brown
University.

code it defends, without modifications to program
compilers or the computer's operating system. It even
randomizes itself to defend against possible bugs in its
own code.

B Designed to be user-friendly, Shuffler runs alongside the

The researchers say Shuffler runs faster and requires
fewer system changes than similar continuous-
randomization software such TASR
(http://web.mit.edu/ha22286/www/papers/CCS15_2.pdf) and

In the above demo, “#’s represent code in memory as a typical web server runs. When Remix (http:/www.cs fsu.edu/~whalley/papers/codaspy16.pdf) ,

the server shifts to running with Shuffler, the "#'s move every 50 milliseconds. The developed at MIT Lincoln Labs and Florida State
University respectively.

https://datascience. columbia. edu/new—-software—continuously-scrambles—code-foil-cyber-attacks 1/2



2018/10/29 New Software Continuously Scrambles Code to Foil Cyber Attacks | Data Science Institute

shuffled web server serves the web page seen at the end of the demo. As an invitation to other researchers to try and break
Shuffler, Williams-King is currently running the software

on his personal website (http://shuffled.elfervnet:8000/) . (He can check that the code is shuffling and whether anyone has attacked the site by reviewing the
program’s logs).

On computation-heavy workloads, Shuffler slows programs by 15 percent on average, but at larger scales—a webserver running on 12 CPU cores, for
example—the drop in performance is negligible, the researchers say.

This versatility means that software distributors as well as security-conscious individuals could be potential end users. “It's the first system that is trying to
be a serious defense that people can use, right now,” said Williams-King.

Shuffler needs a few last improvements before it is made public. The researchers say they want to make it easier to use on software they haven't yet
tested. They also want to improve Shuffler’s ability to defend against exploits that take advantage of server-crashes.

“Billions of lines of vulnerable code are out there,” said the study’s senior author, Junfeng Yang (http:/datascience.columbia.edu/junfeng-yang) , @ computer
science professor at Columbia Engineering (http:/engineering.columbia.edu/) and member of the Data Science Institute (http:/datascience.columbia.edu/) .
“Rather than finding every bug or rewriting all billions of lines of code in safer languages, Shuffler instantly lets us build a stronger defense.”

The study is titled “Shuffler: Fast and Deployable Continuous Code Re-Randomization.” The other authors are Graham Gobieski, James Blake, Xinhao
Yuan and Michelle Zheng, of Columbia; and Kent Williams-King, Patrick Colp and William Aiello, of the University of British Columbia.

— Kim Martineau

£ sHARE K1V El. (https://www.addthis.com/bookmark.php?v=250&pub=xa-4a9be9465d42784c) Posted: Nov 17 2016

550 W. 120th St., Northwest Corner 1401, New York, NY 10027 212-854-5660 ©2018 Columbia University

https://datascience. columbia. edu/new—-software—continuously-scrambles—code-foil-cyber-attacks 2/2



