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Component-based software development is considered to be a promising technology
to increase software development productivity. However, developing component-
based applications faces different challenges. One of them is identifying component
ensembles that satisfy any particular system requirements specification. In this
paper we introduce a component integration evaluation based on software engineer-
ing integration rules. These rules represent real-world experiences and are
combined into knowledge base. These representative rules evaluate compatibility
among components according to their attributes of component specification.
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1. INTRODUCTION
Component-based software development that assembles existing software components is considered
to be a promising technology to increase software development productivity. Basili and Boehm
(2001) have shown that more than 99 percent of all executing computer instructions come from
COTS (commercial off-the-shelf) products. However, developing component-based applications
faces several different challenges. One of them is identifying suitable component ensembles that
satisfy system requirements specifications. 

In evaluating and selecting components, it is becoming increasingly important to have a defined
and potentially automated process for component evaluation due to the ever-increasing number of
components, the broad range of factors effecting their integration, and the combinatoric ways in
which these components can be combined into systems. Orso et al (1999) demonstrated the need
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for metadata in the testing and analysis of distributed component systems. Similarly, metadata can
be used to describe the contents of components for use in the evaluation process.

In this paper we describe an automated rule-based approach to evaluating ensembles of
components within the context of a system requirements specification. 

The structure of this paper is as follows. We introduce rule-based approach in Section 2 and
describe the system overview in Section 3. In Section 4 we present the database structures used in
this system and express the result from the experiment in Section 5. Potential future work and some
concluding remarks are given in Section 6 and 7, respectively.

2. RULE-BASED APPROACH
A rule base or knowledge base is a collection of rules designed through dialogues between a domain
expert and a knowledge engineer or domain experts themselves (Rarandi et al, 1986). To present
this approach in component integration, we collect representative software engineering integration
rules from domain experts in component integration and assert them into rule-based software called
ILOG JRules (ILOG, 2000) – a commercial expert system designed to work with Java. 

JRules is an object-oriented rule-based programming language. A JRules application consists of
a set of rules and a collection of objects. Each rule is composed of a header, a condition part, and
an action part. A rule is processed in the following manner: given a set of conditions, each condition
with its variables is matched to an object with its field values. A condition may include tests on
variable values. If all the conditions are matched (that is, the variables return field values that fulfill
the tests), the action part may be executed. The set of actions may include simple operations such
as printing text, as well as complex operations such as invoking methods on objects or modifying
objects used by the rules. The rule structure is shown in Figure 1.

rule ruleName{
priority = priorityValue;
packet = packetName;
property propertyName = value;

…
when {conditions…}
then {actions…}
};

Figure 1: Rule Structure

Objects in JRules correspond to actual Java objects. To be evaluated by a rule, the object must
exist in working memory. Placing an object in working memory is accomplished in JRules through
the use of an ASSERT statement.

A sample rule for evaluating protocol compatibility is shown in Figure 2. This rule evaluates
protocol compatibility between components that use RMI protocol version 1.1 and 1.0. In this
example, if component ?c1 is implemented using RMI 1.1 and component ?c2 is implemented in
the RMI 1.0 protocol, ten points are added to the compatibility score for the ensemble. This value
is added because a well-defined interface exists between RMI version 1.1 and 1.0. Compatibility
scores range from –10 (the lowest level) to 10 (the highest level).

There are two important things to do before we could execute these rules. First, the XML descrip-
tions must be converted into Java objects. Then, these objects must be moved into working memory.

One approach for generating Java objects is to use the Java binding of the Document Object
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Model (DOM). This is a natural application of DOM since it is primarily intended as a document-to-
object mapping tool. However, we did not attempt this approach, since we were concerned that the
DOM objects did not provide the interface required by JRules. The fact that the collection of Java
objects can be viewed as static, we simply translated a sample set of XML component specifications
into Java classes. This translation is mechanical and should be straightforward to automate.

The problem of moving Java objects into working memory could not be solved easily, as only
those objects returned by the XQL query were moved. We decided to use XSL Transformations
(XSLT) (Clark, 1999) to generate the required ASSERT statements from the XML documents
returned by the XQL query. These statements referenced the corresponding Java objects that had
been generated statically beforehand. 

Once these objects have been moved into working storage, the integration rules can be executed
to rank the ensembles. Evaluation scores are accumulated for each ensemble set and the ensembles
are presented to the system integrator in order of their rankings.

3. OVERALL SYSTEM STRUCTURES 
The system consists of a searchable repository of component specifications, integration rules, query
server, and component ensemble evaluator as shown in Figure 3. System integrators provide system

rule ProtocolCompatible1{
priority = high;
when {

?c1: Component (protocol.equals(“RMI1.1”); ?i1:id);
?c2: Component (protocol.equals(“RMI1.0”); ?i2:id; ?i1 <?i2);
?e: Evaluation();

}
then {

modify ?e{score+=10;}
}

};

Figure 2: Protocol Compatible Rule

Figure 3: System Architecture
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requirements specifications that define the functional requirements of the components as well as
any overriding constraints on how the components are integrated.

The requirements specification is converted to a series of queries on the component repository.
Components that match the system requirements specification are grouped into ensembles.

Components in each ensemble are evaluated for compatibility based on the value of attributes
in their component specification and a repository of software engineering integration rules. The
attributes define characteristics that impact compatibility with other components, for example, the
protocols supported by the component. Integration rules define how attributes affect component
integration. These rules identify both those attribute combinations that simplify—and those that
complicate—system integration.

The integration rule database may be extended by system integrators and component vendors.
Integration rules typically reflect known compatibilities and incompatibilities between products.
The discovery and refinement of these rules is a normal part of the system integration process. This
makes it necessary to provide mechanisms for adding new integration rules to the database, and to
modify and delete existing rules.

Finally, the ensembles, ranked according to compatibility, are returned to the system integrator
for further evaluation.

4. DATABASE REPRESENTATION
4.1 Component Specification
XML (eXtensible Markup Language) is used in this experiment to represent both the component
and system requirements specifications. XML is a World Wide Web Consortium (W3C) recommen-
dation that has become universally accepted as the standard for document interchange (Bray et al,
1998). XML is well suited for this application as it provides a formal representation for mapping
attributes to values and is fully extensible (Mundie, 1997; Cover, 2000). Figure 5 shows a part of
the Document Type Definition (DTD) for a component specification. 

The component specification contains general information, component interface information, and
a component ID. Some attributes included in the component specification borrow from Poulin and
Werkman (1995). The general information includes the component name, version, vendor, platform
and functionality and information about the system interfaces. Functionality may be described

Figure 4: Qualified Components



Rule-Based COTS Integration

Journal of Research and Practice in Information Technology, Vol. 35, No. 3, August 2003 201

informally using key terms or with a formal specification language such as the one described by Mili
et al (1997). Vendor information is used to furnish additional information about the component.

Component interfaces documented in the component specification are not simply the signatures
of method or function calls in the component, but include non-functional properties such as
performance, accuracy, availability, latency, and security. This expanded use of the term interfaces
is described by Bachmann et al (2000) in their treatise on component-based software engineering. 

ComponentID serves as a unique identifier of the component. 
Prieto-Diaz and Freeman (1987) suggest that the characterisation of the functionality of a

software component and its environment suffice for classification. We include information about
functionality and environment in our component specification but include additional information
regarding component characteristics that may affect integration with other components. Gorman
(1999) states that the inclusion of additional attributes may improve the effectiveness of component
search. It is important to justify the inclusion of these attributes in the component specification and
not just add them extemporaneously. Poulin (1999) suggests that collecting large amounts of
metadata to help retrieve components wastes time and money, and makes the library both difficult
to contribute to and difficult to retrieve from. It is therefore necessary to limit the selection of
attributes to those that have a significant impact on the suitability of a component for integration.
The availability of language bindings, for example, is an important attribute that greatly influences
the degree of difficulty involved in integrating a component.

4.2 System Requirements Specification
The system requirements specification is also represented in XML. The system requirements
specification consists of one or more component specifications and a set of system constraints. In
an actual system this specification may in fact be simply one element of a larger artifact.

<?xml encoding=”UTF-8”?>
<!ELEMENT components(component+)>
<!ELEMENT component(general_info, protocol+, transaction_management?,security?)>
<!ATTLIST component id ID #REQUIRED>
<!ELEMENT general_info (name, version, vendor, platform, function+, framework,
language, sys_req, domain, keywords, gui?, cost, license, lang_supported)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT platform (#PCDATA)>
<!ELEMENT function (#PCDATA)>
…
<!ELEMENT protocol (name, version, provider, RMI_protocol?)>
<!ATTLIST protocol credential CDATA #REQUIRED>
<!ELEMENT provider (name, phone, address, url, contact+)>
…
<!ELEMENT transaction_management EMPTY>
…
<!ELEMENT security (confidentiality?, authentication?, non_repudiation?)>
<!ELEMENT (#PCDATA)>

Figure 5: Component Specification DTD
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System constraints use the same collection of attributes as individual components, for example,
Java which may be specified as the language of choice for the system. Component specifications in
the system requirements specification are normally sparsely populated—often the functional
requirements alone are specified. This is because elements in the system requirements specification
are treated as absolute constraints on the system (they are, after all, requirements). For example, if
the platform is specified as Windows NT, only components that are available on this platform are
identified. Attributes specified in the system requirements specification for individual components
similarly limit component candidates to those that match the requirements. This produces a tension
between search constraints and search results and, correspondingly, between requirements and
available components. As search constraints are relaxed, additional but less-qualified components
will be identified. On the contrary, as additional constraints are added, a smaller group of better-
qualified components will be identified. 

The ability to modify requirements and re-execute a search is a major benefit of automating this
process—allowing system integrators to adjust system requirements to market realities in real time.

5. EXPERIMENT
To validate our approach we created a model problem consisting of a system requirements
specification for a compiler consisting of a lexer, parser and code generator and a component
repository. Figure 6 shows the random sampling of ensembles selected, ranked by score. These
ensembles are selected from a component repository containing three lexical analysis tools
(component IDs: 100, 115, 210), five parsers (component IDs: 105, 106, 107, 109, 1001) and two
code generators (component IDs: 101, 103). There are total of 30 possible combinations
(ensembles) of components in the repository that meet the system requirements specification. 

Ensemble Component IDs Compatibility Score 

21 115, 101, 107 39 

20 210, 101, 107 39  

8 210, 101, 106 29 

26 210, 101, 105 29 

24 115, 101, 105 29  

3 115, 103, 106 20 

Figure 6: Compatible Score Level of Ensemble Sets

Ensembles 20 and 21 both share a high score of 39. These scores result from the application of
the integration rules to the set of attributes defined for the components included in each ensemble.
Components in both of the highly ranked ensembles share a number of attributes, whilst the
remaining attributes are not highly incompatible, resulting in relatively high overall scores for the
ensembles. 

6. FUTURE WORK
Until this model can be realised as an operational system, or at least scaled up significantly, it is

difficult to provide a more compelling example. The first step in this process should be to define a
“standard” component specification. Our current focus is to create a core set of common attributes
that can then be extended for a specific component model and domains. Furthermore, we hope to



Rule-Based COTS Integration

Journal of Research and Practice in Information Technology, Vol. 35, No. 3, August 2003 203

provide a set of necessary attributes for the integration from real-world implementations. This
information will be included into the resulting ranked ensembles to benefit later system integrators
who have similar system requirements specification. Currently, we are in the process of gathering
information from software developers in real-world because there is very little published experience
and knowledge concerning component integration. We hope the collected qualitative measures on
integration attempts from domain experts will be influential on component-based software
development. We also plan to handle mismatch software components by extending integration rules
to reduce incompatible possibility.

7. CONCLUSION
Our model can be thought of as an expert system for system integration. It allows system integrators
to explore a broader component space than is possible using manual techniques, and quickly
eliminates components that are overly difficult to integrate. 

In addition to aiding in the evaluation of component ensembles, our model provides a
mechanism for preserving, sharing, and re-using hard-won system integration knowledge. System
integrators can use this information to identify compatible ensembles of components and actively
expand upon it as additional insights into the rules that govern system integration emerge.

The greatest challenge in this model is not the feasibility of automating the process, which we
have demonstrated, but the ability to collect the data necessary to drive the process. First, it is
necessary to populate the component repositories with a sufficient number of component
specifications to guarantee that the system requirements specification can be satisfied from the pool
of available components. Second, it is necessary to identify, through successive rounds of
refinement, the attributes that are used to describe each component and the set of system integration
rules that are used to compute the compatibility of ensembles.
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