
Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 9

Evolution of Software Processes and of their Models:
A Multiple Strategy Approach
Mohamed Ahmed-Nacer
Computer Science Institute, USTHB University
Software Engineering Laboratory
BP 32 El-ALIA-Bab-Ezzouar, ALGERIA
E-mail: anacer@wissal.dz

This paper deals with a new approach to modify software process models and their
software processes. Such an approach, in contrast with existing ones, supports the
different evolution strategies for the software process models, and allows the
adaptation of software process during execution. The integration of these two types
of evolution is based on a chaining of phases (generation/evolution/simulation/
execution). It allows the change of software process models as and when executed
without inconsistencies, to perfect software processes through simulation and to
define new ones dynamically.

Keywords: software process, process model, evolution, software engineering,
simulation.

Classification: D.2 Software Engineering
K.6. 3 Software management
• Software process

Manuscript received: 22 January, 2002
Communicating Editor: Denis Warne

Copyright© 2004, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
Process modelling is a way to describe how a process should be conducted according to a model
(process model). A process is generated from the process model that has been attached with enough
information to start execution.

Software development is a learning process that is highly dependent on the context and
circumstances (Cugola and Ghezzi, 1999). The Software crisis has shown that improvements in
production processes are necessary to improve product quality: the process used to develop and to
modify the software plays a crucial role in the search for the software quality and the user’s
satisfaction. However, software processes are incomplete and not determinist. For example, 1) tasks
to be executed may be dependent on a product structure that has been fixed at development time,
and 2) changes in software development policy may necessitate the dynamic addition or deletions
of activities at process time. This means that software processes need to be dynamically adjusted
throughout the project.

Most of the works on software processes focus on the evolution of process models (Bandinelli,
Fugetta and Ghezzi, 1993; Conradi, Nguyen, Inge and Liu, 1998; Kabba and Derniame, 1995; Kaiser
and Ban-Shaul, 1993; Madhavji, 1992; Minh, Wang and Conradi, 1997). Very often, this evolution

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200410

is carried out through ad-hoc procedures or pre-defined policies. The latter is inappropriate because
it does not offer a way to adapt rules of evolution to suit a specific software development process.
Moreover, as these approaches concentrate only on the process model level, there is no possibility
(or limited supports) to operate directly on the software process during its execution.

I shall present, in this paper, a new approach that focuses on the evolution aspects of 1) the
software process model level and 2) the software process level. At the first level, an innovative
approach, in contrast with existing ones, supports different evolution strategies: process models
must not be submitted to the same evolution constraints. At the second level, the possible changes
allow adaptation of software processes during their execution.

These two complementary types of evolution are integrated. This integration, based on a
chaining of phases (generation/evolution/simulation/execution), offers an evolution environment
that takes into account the multiple cases of changes such as faults in the process, missing steps,
dynamics of the environment (development policy, users, technologies). This environment allows
the modification of software process models at execution time, to perfect software processes
through simulation and to define new ones dynamically.

2. SOFTWARE PROCESS MODEL AND SOFTWARE PROCESS TRANSLATION
Many approaches for software process modelling have been proposed (Derniame, Kinkelstein,
Kramer and Nuseibeh, 1994; Jaccheri, Conradi and Dyrnes, 2000; Nitto, Patricia, Schaeffer and
Hala, 1999; Reimer and Schaeffer, 1997; Wang, Larsen, Conradi and Munch, 1998). These
approaches differ on several points according to the process modelling formalism used. For
instance, there is a great variety of software process modelling languages (Conradi and Jaccheri,
1999; Fugetta and Wolf, 1996). These formalisms are based on Petri net notations (Fernstrom, 1993;
Bandinelli, Braga, Fugetta, and Lavazza, 1994), on rules (Junkerman, Peuschel, Schaefer, and Wolf,
1994), on procedural process programs (Sutton, Heimbigner and Osterweil, 1995; Sutton and
Osterweil, 1997) and on events and triggers (Estublier and Dami, 1996). The evolution approach
described in this paper uses the concepts proposed in the APEL formalism (Dami, Estublier and
Amiour, 1998) for the graphic description of software process models. This graphical notation is
very similar to OMT notation (Rumbaugh, 1995).

2.1 Basic Concepts of APEL
APEL is a graphical and executable formalism for process models. Process models are described by
using static and dynamic aspects.

Static Aspects
Static aspects encompass all the entities involved in an APEL process definition. They are mainly
activities, products and agents.

An activity is an atomic or composite operation: a process model is composed of a set of
activities which can be recursively decomposed, by following different levels of abstraction
beginning with the generic process model to the specific one. A product is an entity produced or
manipulated in an activity (document, program module, etc). An agent represents a person in charge
of one or several activities in which he will be assigned different roles.

Any entity (be it a product, an agent or an activity), which is defined in a process model, is
typically defined. The concepts of inheritance (specialisation/generalisation) and composition/
decomposition are used during process modelling. A product or an activity type, once defined, can
be reused in different processes.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 11

Dynamic Aspects
The dynamic aspects of the process are mainly described through control flow, data flow and the
state diagram. These aspects are based on the concept of event and event capture. Events are
automatically generated each time a) a method is called, or b) the state of an entity is changed, or
c) a temporal signal (clock) is produced. Events are captured by the entities (activity, product, and
agent) that are registered to react to that event.
• The control flow (CF) describes how activities will be launched and synchronised during the

process execution. A control flow indicates the expected event at its origin and the command to
be sent to its destination. Figure 1 shows a control flow between Development activity and Test
activity. This Control flow means that when the event (Development, end) occurs (upon the
termination of the Development activity) the Start method is applied on Test which is
automatically started.

• The data flow (DF) shows how products circulate between two activities that consume,
transform or produce them. Thus, a data flow connects the output of an activity to the input of
another activity. This connection defines the access mode (read, write, exclusive) and the
transfer mode of a product (transfer, share, copy, etc).
Figure 1 shows examples of:
– A data flow that transfers the document spec_doc from the Requirement specification

activity to the Development activity.
– Two data flows that indicate two sharing products (obj_code and src_code) between the

Development activity and Test activity.
• The state diagrams (SD) are determined for the activity, product and agent types. For a given

type, the SD describes (1) how an entity of that type evolves in time (i.e. which states it goes
through) and (2) the events and conditions that cause the state changes. Activities have a
predefined SD with the states: inactive, active, suspended, terminated and aborted. More details
on the static and dynamic aspects of APEL are given in Dami et al, 1998.

Figure 1: A Process Model

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200412

2.2 Translation : Software Process Models and Complex Objects (Aggregates)
A software process model, once defined graphically using APEL formalism, is translated auto-
matically in terms of objects according to the Adele data model (Estublier and Casallas, 1994). This
allows the management and modification of software process models and software processes. In the
Adele environment, the basic concepts of the data model are:

Object classes and relation classes
Entities (activities, products and agents) are described by objects. The connections between these
entities (control flow, data flow) are described by relations. The objects and relations are created
from object and relation classes, respectively, that are generated by a compiler at the time of the
translation. Object classes describe activity types, product types and agent types. Relation classes
describe the different connections of control flow and data flow.

A predefined class called Activity describes the default behaviour of an activity as well as the
common features that manage it. Thus, an activity is in charge of creating its own Workspace (WS).
The workspace of an activity represents the sub-activities, the products, the agent assigned to this
activity and the different connections of data flow and control flow. The concepts of inheritance
(specialisation/generalisation) and composition/decomposition used for data modelling are also
used during the process modelling.

Aggregates
This data model supports complex objects called aggregates. An aggregate is an object linked to its
components through relationships. The semantics of an aggregate are defined by relationship
behaviour, which is defined by users. Thus, almost any kind of aggregate with any behaviour and
consistency constraints may be defined.

Triggers
The dynamic aspects are described in the definition of object classes and relation classes using
trigger rule formalism.

Triggers take the following form “RULE name_rule WHEN event {Action}», where "event" is a
predicate of the system state, database state and the activities underway (queries, navigation as well
as changes). "Action" is a method (or a program).

A trigger defined in an object class is executed when the associated event occurs to an object of
this class.

A Trigger defined in a relation class is executed whenever the associated event occurs to an
object linked by this relation. Thus, we can define for each object a specific semantic depending on
the nature of the relation that links this object with the others; that's how the aggregates are
managed. So, an action on an “X” object has the effect of executing the triggers defined for the
relations where “X” is the origin and also for the relations where “X” is the destination. These
triggers are defined respectively by the keywords ORIGIN and DESTINATION.

Section 4 shows how the use of the aggregate notion combined with the use of the triggers on
relations allows defining multiple strategies (semantics) to modify software process models.

3. EVOLUTION CONTEXT
Software process models can be adapted to suit different software development contexts. They
define parameters and characteristics that determine the way to derive (or to generate) software
processes. Moreover, mechanisms must be provided to allow the adaptation of software process

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 13

models dynamically to the new needs, to correct inconsistencies found during the process
execution, to modify some constraints or to act directly on the process execution. For instance,
feedback may occur which would require the re-execution of activities, etc.

As the proposed approach integrates two evolution levels (the evolution of software process
models and the evolution of the software processes), each change on a process model has an impact
on the software processes and vice versa. The evolution approach is based on a chaining of phases
(generation/evolution/simulation/execution) to reduce and to control change risks (Figure 2). This
chaining of phases, similar to the spiral model (Boehm, 1988), allows the development of the
software processes and their models without inconsistencies. For instance, when a problem is
detected or a change is needed in a software process model, the system determines the possible
changes and effects in the software process. The simulation phase is thus launched to evaluate and
validate these changes. During this phase, the software process model is updated and validated
through multiple simulations before its re-execution phase. These changes of phase are controlled
through triggers (ECA rules). The communication of reports from one phase to another updates the
software processes and their models in an incremental manner.

Figure 2: Chaining of Phases

A transaction mechanism is used to avoid multiple feedback whenever a change is needed in the
simulation phase: Change operations can be grouped in a unique transaction. This offers great
flexibility during the process model evolution. Moreover, because of the order of updating
operations (that has the effect on the process model consistency), the transaction mechanism allows
intermediate inconsistencies: this leaves the project manager free to define his updating operations
in any order. The software process model is thus updated and validated as soon as the transaction is
validated in the simulation phase.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200414

4. SOFTWARE PROCESS MODEL EVOLUTION
Very often, process model evolution is achieved either through ad-hoc procedures or pre-defined
policies. This approach is not flexible, as it offers no way of adapting evolution rules to suit
individual applications. This section presents the evolution mechanism that allows different
evolution strategies for the process models. Consequently, the process models should not have to
submit to the same evolution constraints. The evolution semantics, during the evolution of the
process models may differ according to the desired evolution strategy.

4.1 Taxonomy of Updating Operations
When a required change in the process model concerns entities such as software component types,
activity types, tool types or agent types, the evolution mechanism that is activated is the one that we
have developed for the schema evolution (Ahmed-Nacer and Estublier, 2000) (indeed activity types,
tool types or agent types are defined as object classes in the process model – see Section 2.2).

A semantic is associated with every updating operation, by default. In addition the multiple
semantics of evolution are available in a library enabling software project managers to choose their
evolution strategy freely. This library is not static. The project manager may modify it at any time
by adding new semantics of evolution. The evolution system remains open and managers are able
to decide how their process models should evolve.

The taxonomy of updating operations proposed by default is the one discussed in (Ahmed-Nacer
and Estublier, 2000) extended with specific updating operations that are inherent to the process model.

1. Inheritance relation modifications:
• add a class (activity type, product type or agent type) in a process model,
• delete a class (activity type, product type or agent type),
• rename a class (activity type, product type or agent type),
• add a sub-activity, delete a sub-activity, change the order of the sub-activity list.

2. Class definition modifications:
• add, delete and rename a property (attributes, methods, events and triggers),
• change the value domain of a property (attributes, method signatures),
• add, change, rename a default value of an attribute,
• add, delete, change a constant attribute,
• change the characteristics of an attribute or a relationship.

4.2 Multiple Evolution Strategies: The Mechanism
As mentioned in Section 2.2, an aggregate is an object linked to its components by relationships.
The aggregate semantics is defined by relationship behaviour, which is defined by users. Thus,
almost any kind of aggregate with any behaviour and consistency constraints may be defined. This
notion of aggregate is used to describe a software process model (that is a complex object) as an
aggregate linked to its components (activity classes) by specific relations. These specific relations
are named “aggregate_relation”. The "evolution policy" of the process model is defined in this
aggregate_relation. In this regard, using the Adele trigger mechanism corresponding to the relations
(propagation effect on the relation), any change to a process model gives rise to actions that update
the process model and maintain its consistency (the aggregate).

For instance, when deleting an activity class from a process model by using the updating
operation ‘‘delete_activity (Process Model Name, Activity Class Name)’’, the appropriate triggers

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 15

will be executed by propagation effects on the relation. These triggers are only those specified in
the relations which link this process model to its activity classes (i.e., the aggregate_relation that
links the aggregate (process model) to its components (activity classes), and that define the
evolution policy).

By default, an aggregate_relation class named process_def links a process model to its activity
classes (Figure 3). It defines the evolution policy as follows:

Figure 3: Process Model Aggregate

1. relation process_def from process_model to activity extends define action, check_sub-
activity, check_new_classname…

2. relation define_action from process_model to activity
3. rule delete when delete_activity (ProcessModelName, ActivityClassName) on destination
4. {for t in destination ->process_def
5. {if (t == ActivityClassName) rmr (this);}}
6. rule rename when rename_activity (ProcessModelName, ActivityClassName,

NewLocalName) on destination
………..
rule add_sub when add_subactivity (ProcessModelName, ActivityClassName,
Main_ ActivityClassName) on destination
……….
{...}
end define_action;

7. relation check_subactivity from process_model to activity
8. rule delete_sub_act when delete_activity (ProcessModelName,

ActivityClassName) finish on destination

{for t in destination->process_def
{if (t == ActivityClassName)
for i in ActivityClassName <- isa

{if (i->isa == ActivityClassName)
delete_activity (ProcessModelName, i}}}

end check_subactivity;

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200416

– Process_def (line 1) is defined as an aggregate relation that inherits from multiple relation
classes: defined_action, check_subactivity, check_new_classname, etc.

– define_action (line 2) defines all the possible updating operations. Each updating operation is
associated with an event (delete_activity, rename_activity, add_sub-activity…) using a trigger rule.
For instance, the changing or the updating operation that deletes an activity class is associated to
the trigger rule ‘‘delete’’ (line 3). This trigger is executed when the event “delete_activity” occurs.

The semantics of the updating operations are defined in the relations: check_sub-activity,
check_new_classname, etc. For instance, the semantics defined in the relation check_subactivity
(line 7) expresses the fact that when an activity is deleted, its sub-activities are also deleted unless
they inherit (i.e. they are also sub-activities) from other activities.

As the aggregate relation process_def inherits from these relations and from define_action (line
1), each change on the process model results in the execution of the appropriate trigger rules.

For instance, when deleting an activity class from a process model "delete_activity
(ProcessModelName ActivityClassName)", the delete action (line 3) is validated when the
constraint (rule delete_sub_act -line 8) , which is also associated to the same event delete_activity,
is checked . This rule (post-condition finish) is defined in the relation check_subactivity.

– Operators "<-" and "->" make it possible to navigate through relations. "->" means to navigate
through the relation, from its origin (named origin) to its destination (named destination) and "<-"
the reverse.

– The expression X->ISA means the set of all the destinations of the ISA relations where X is
the origin. Thus, X->ISA means the super classes of X and X<-ISA all the subclasses of X. The
operator "==" is the complete set equality.

– In line 4, destination->process_def means all the destinations of the process_def relation. As
the origin of the process_def relation represents the process model (an update operation is always
specified according to a process model), destination refers successively to all the activity classes of
this process model.

– Lines 4 and 5 mean that when the link between the process model and its activity class (to delete)
is detected then this link is deleted (“rmr this”) . “this” means the current object or the current relation.

4.3 Generation of New Evolution Policies.
To generate a new evolution policy, one has only to create a new class of an aggregate relations.
This new class will inherit actions described in the define_action and will define new evolution
semantics. These new evolution semantics are simply defined by the inheritance of existing
relations or directly redefined in new relations.

For instance, to move from the default evolution policy to a new evolution policy, the manager
should create:

• new relation classes in order to express the new evolution semantics. (for example the
relation classes: no_instance, connect_to and no_rename),

• and a new aggegate relation: process_new that inherits these new semantics and that inherits
from define_action relation.

Relation process_new from process model to activity extends define_action, no_instance,
connect_to, no_rename…

4.4 Process Model Consistency
When a process model is modified, consistency constraints are applied to ensure that the new
semantics introduced by the manager does not allow the creation of process inconsistencies.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 17

Respecting these constraints is fundamental to the process model consistency. Examples of these
constraints are:

– the deletion of an activity class is not allowed if one or more of its associated activities are
under execution (the activity state is ACTIVE).

– the change of a state nature into the activity state diagram (STD) is not allowed if an activity
is characterised by this state during process execution, etc…

5. SOFTWARE PROCESS EVOLUTION
This section presents the second aspect of the evolution approach. It concerns the evolution of
software processes. This evolution, complementary to the evolution of software process models,
allows direct action on the process execution. This will allow efficient correction of inconsistencies
found during the process execution and control the process execution with regard to the different
possibilities to:
• modify the execution (modification of data flow or control flow, addition, suppression and

substitution of activities, etc),
• simulate process execution using consultations and appropriate modifications of the process in

order to perfect process models,
• define the process by the dynamic creation of entities (activities, products, control flow, etc).
• consult the state of the different processes during the execution.

5.1 Nature and Semantics of Updating Operations
The taxonomy of the updating operations on software processes is as follows:
• to create, delete and rename an activity,
• to insert and move an activity,
• to create, delete and rename a product,
• to transfer, share and copy a product,
• to create, delete and rename a Control Flow,
• to create, delete and rename a Data Flow.

The semantics of the main updating operations is as follows:

Creating an Activity:
New_activity (ActivityName, ActivityClass, Main_Activity, Agentname, Role)

An activity (ActivityName) is always created according to its class (ActivityClass). ActivityClass is
one of the multiple activity classes defined in the software process model. Once created, the activity
belongs to the workspace of its main activity (Main_Activity). The workspace of an activity
represents the sub-activities, the products, the agent associated with this activity as well as its
different connections of data flow and control flow. By default, the main activity is the ROOT
activity.

An activity is created with an INACTIVE state. It can be executed:
1. indirectly, through a control flow,
2. directly, therefore dynamically (command Start ActivityName).

AgentName refers to the agent associated with this activity. A role is assigned to him for this
activity (Role). An agent can be in charge of one or more activities.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200418

Deleting an Activity
Delete_activity (ActivityName, Main_Activity)

This operation allows the project manager to delete an activity (ActivityName). It implies the
deletion of all its workspace (sub-activities, products, etc).

By default, activities that were attached to the deleted activity by a control flow are
automatically reconnected by a new control flow which respects the same semantics (Figures 4 and
5). It is in some way the same for the semantics of the data flow.

Example: delete (Unit_test, Test)

Figure 4: Before the deletion of Unit_test activity

Figure 5: After the deletion of Unit_test activity

However, the project manager can add his own control flow or data flow semantics. This results
in great flexibility since it allows the manager the freedom to create different semantics for his
software process.

Inserting an activity:
Insert (Act1, New_Act, Act2)

When an activity is created, it may aim at doing new tasks among the existing activities (new needs,
change of strategy, etc). It is useful to have the ability to insert an activity directly among the existing
ones. In this context, according to the semantics by default, two control flow relations are thus
created automatically, within the new activity (New_Act) and those which are adjacent (Act1 and
Act2). The manager can then dynamically create data flow relations according to the desired tasks.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 19

Moving an Activity:
Move (Act1, Act, Act2)

This operation allows moving an existing activity Act between the activities Act1 and Act2. Two
operations are thus executed.

Firstly, control flow relations and data flow relations that were bound in Act are deleted.
Secondly, the activity Act is inserted between Act1 and Act2 using the “Insert” operation.

Creating a New Data Flow
NewdataFlow (DF_class, Act1, Outprod, Act2, Inprod)

This operation creates a new data flow relation between the product Outprod (produced in the
output of Act1) and the activity Act2. This relation defines a transfer, a copy or a sharing of the
product according to the DF_class parameters. A new local name (Inprod) is associated to this
product as input in the activity Act2.

Creating a New Control Flow
New ControlFlow (Act1, Act2)

This operation creates a new control flow relation between the activity Act1 (as origin) and the
activity Act2 (as destination). This relation defines the execution sequence between Act1 and Act2.
The condition of this execution sequence depends on the nature of these activities:

1. When the activities are in a same level, the semantic of the control flow is:

Start the execution of Act2 as soon as the activity Act1 terminates.

2. If Act1 is the main activity of Act2, with Act2 as the first or initial sub-activity, the semantics of
the control flow is:

As soon as Act1 becomes active (beginning of execution), then start the execution of its first sub-
activity (Act2).

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200420

3. If Act1 is the main activity of Act2, with Act2 as the final sub-activity, the semantics of the
control flow is:

As soon as the final sub-activity (Act2) of the main activity Act1 finishes its execution, stop the
execution of Act1 (Act1 terminates).

Deleting a Dataflow or a Control Flow
Delete (Flowclass, Act1, Act2)

This function deletes the control flow or the data flow relation (according to Flowclass) between
the source activity Act1 and the target activity Act2.

When a data flow is deleted, the product involved at the origin of the data flow remains as the
output product of the source activity Act1.

Creating a Product
NewProduct (prodName, prodClass, ActivityName, IO_mode)

A product (prodName) corresponding to a product class (prodClass) is always created according to
an activity (ActivityName). The product class prodClass is necessarily one of the product classes
defined in the process model. The product is considered as input product or as output product
according to IO_mode parameter.

Deleting an Instance Product
Delete_prod (Prodname, ActivityName)

The deletion of a product is always done according to an activity since products may have the same
local names in different activities.

Transferring, Sharing and Copying a Product

All products can be transferred dynamically, either copied or shared among several activities.

Share (Outprod, Act1, Inprod, Act2, mode)
This operation allows the manager to share the product Outprod belonging to the workspace of Act1
with the workspace of Act2. Inprod in Act2 designates this product locally. The access mode of the
product in the activity Act2 is given by the mode parameter (read, exclusive or write).

Transfer (Outprod, Act1, Inprod, Act2)
This operation transfers dynamically the product Outprod of the activity Act1 towards the activity
Act2. The new local name is Inprod. The transfer is effective: the product belongs only to the
workspace of Act2.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 2004 21

Copy (Outprod, Act1, Inprod, Act2, mode)
This operation creates a copy of the product Outprod belonging to Act1 to include it in the
workspace of Act2. The new local name of this copy is Inprod. The mode parameter indicates the
access mode of this copy in Act2 (read, exclusive or write).

5.2 Consultation operations
Interactive consultations during software process execution are allowed. They greatly assist to
perfect a software process. The project manager may orient the consultation by a selection request
on entities (activity, product…) or on their characteristics. For instance,

Listsel (Activity, Design, [Activity, state = suspended]) gives the list of sub-activities belonging
to the Design activity and which execution has been suspended.

Listsel (Activity, Design, [Product, CirculationMode = share]) gives the list of the shared
products in the Design activity.

6. CONCLUSION
This paper has dealt with the crucial problem of evolution in PSEEs (Process Centered Software
Engineering Environments). The goal in this work is to define an approach that copes with multiple
evolution cases, in particular in 1) finding suitable mechanisms and policies to support process
evolution and 2) allowing dynamic process changes.

In this context, the presented approach is innovative since it supports different process model
evolution strategies; evolution rules may be adapted (multiple semantics) to suit individual software
development projects.

Another key result is the integration of two complementary evolution types, between the process
model level and the process level. Thus, based on the chaining of phases, when a change is needed
in a process model (first evolution type), a simulation phase is launched to validate these changes
by using update operations (second evolution type) which acts directly on the process (instance). A
software process model is thus updated and validated incrementally. Moreover, the possibility of
acting directly on the process helps to modify and to simulate process execution to perfect software
processes dynamically.

These results seem very promising considering the prototype that have been implemented. We
have found a great flexibility when defining new policies and a real efficiency to perfect software
processes (correct inconsistencies) when acting on the process execution.

REFERENCES
AHMED-NACER, M and ESTUBLIER, J. (2000): Schema management on software engineering databases’’, Journal of

Computers and Artificial Intelligence, 2:183–203.
BANDINELLI, S., BRAGA, M., FUGETTA, A., and LAVAZZA, L (1994): The architecture of SPADE-1- Process

Centered SEE. WARBOYS, Brian (ed): Software process technology, Third European Workshop, EWSPT’94. LNCS
772:15–30.

BANDINELLI, S. C., FUGETTA, A. and GHEZZI, C. (1993): Software process model evolution in the SPADE
environment. IEEE Transactions on Software Engineering 19: 1128–1144.

BOEHM, B. (1988): A spiral model for software development and enhancement. IEEE Computers: 61–72.
CONRADI, R. and JACCHERI, M. L. (1999): Process modeling languages. Software Process: Principles, Methodology,

Technology: 27–52.
CONRADI, R., NGUYEN, M., INGE, A. and LIU, W.C. (1998): Planning support to software process evolution. In Proc

Eight International Conference on Software Engineering and Knowledge Engineering (SEKE), San Francisco, SU-
report 1/98 USA.

Evolution of Software Processes and of their Models: A Multiple Strategy Approach

Journal of Research and Practice in Information Technology, Vol. 36, No. 1, February 200422

CUGOLA, G. and GHEZZI, C. (1999): Software processes: A retrospective and a path to the future. Software Process
Improvement and Practice 4(3):101–123.

DAMI, S., ESTUBLIER, J. and AMIOUR, M. (1998): The APEL: a graphical yet executable formalism for process
modeling. Automated Software Engineering Journal 5(1):61–96.

DERNIAME, J. C., FINKELSTEIN, A., KRAMER, J. and NUSEIBEH, B., (1994): Directions in software process
modeling and technology. In Software Process Modeling and Technology, FINKELSTEIN, A., KRAMER, J. and
NUSEIBEH, B. (eds), Research Studies Press & Wiley.

ESTUBLIER, J. and DAMI, S. (1996) : About reuse in multi-paradigm process modeling approach. In 10th int’l Software
process workshop: 63–65.

ESTUBLIER, J. and CASALLAS, R. (1994): The Adele software configuration manager. Trends in Software, John Wiley
and Sons, Baffins Lane, Chichester, West Sussex, PO19 1UD, England, 1994, Chapter 4: 99–133.

FERNSTROM, C. (1993): Process weaver: adding process support to Unix. In Proc. of the 2nd Int’l Conf. On the Software
Process, Berlin :12–26.

FUGETTA, A. and WOLF, A. (1996): Software process. Trends in Software. John Wiley & Sons, New York (4):89–100.
JACCHERI, M., CONRADI, R. and DYRNES, B. H. (2000): Software process technology and software organizations.

EWSPT 2000:96–108.
JUNKERMAN, G., PEUSCHEL, B., SCHAEFER, W. and WOLF, S. (1994): MERLIN: Supporting cooperation in

software development through a knowledge based environment. In Software process modeling technology,
FINKELSTEIN and KRAMER (eds), John Wiley & Sons Inc. 1:103–129. England.

KABA, A. B. and DERNIAME, J. C. (1995): Transients change processes in process centered environments. In Proc. of the
fourth EWSPT’95, LNCS 913 :255–259.

KAISER, G. E. and BEN-SHAUL, I. Z. (1993): Process evolution in the marvel environment. In Proc. of the 8th
International Software Process Workshop, SHAEFER, W (ed), Wadern, Germany. IEEE Computer Society
Press:104–106.

MADHAVJI, N. (1992): Environment evolution: The Prism model of changes. IEEE Transactions on Software
Engineering, 18(5):380–392.

MINH, N. N., WANG, A. I., and CONRADI, R. (1997): Total software process model evolution in EPOS: experience
report. Proc. of the International Conference on Software Engineering:390–399, Boston, USA.

NITTO, J. H., PATRICIA, L., SCHAEFER, W. and HALA, S. (1999): Cooperation control in PSEE. Software Process:
Principles, Methodology, and Technology:117–164.

REIMER, W. and SCHAEFER, W. (1997): Towards a dedicated object oriented software process modeling language.
Workshop on Modeling Software Processes and Artifacts, 11th European Conference on Object-Oriented
Programming, Jyväskylä, Finland.

RUMBAUGH, J. E. (1995) : OMT: The object model. Journal of Object Oriented Programming JOOP 7(8): 21–27.
SUTTON, S. M., HEIMBIGNER, H., D. and OSTERWEIL, L. J. (1995): APPL/A: A language for software process

programming. TOSEM 4(3):221–286.
SUTTON, S. M. and OSTERWEIL, L. J. (1997): The design of a next-generation process language. ESEC/SIGSOFT FSE:

142–158.
WANG, A. I., LARSEN, J. O., CONRADI, R. and MUNCH, B. P. (1998): Improving cooperative support in the EPOS CM

system. In Proceedings of the Sixth European Workshop in Software Process Technology, Springer-Verlag:75–91,
Weybridge, UK.

BIOGRAPHICAL NOTES
Mohamed Ahmed-Nacer received the PhD degree in computer science from
the Polytechnic National Institute (INPG), Grenoble, France. He is a research
director and is responsible for the software engineering team at the Computer
Engineering Laboratory of USTHB (Algiers) University. His current research
interests include process modelling, software databases and schema evolution.

Mohamed Ahmed-Nacer

