Chapter 9 Graphs

9.7 Planar Graph

- Introduction
 - Example 0 (page 657~658)
 - Is it possible to join these houses and utilities so that none of the connections cross?
 - **D** Solution:
 - The problem can be modeled using the complete bipartite graph K_{3,3}.
 - Can K_{3,3} be drawn in the plane so that no two of its edges cross?

Definition 1 (page 658)

- A graph is called planar if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common point). Such a drawing is called a planar representation of the graph.
- □ Example 1 (page 658)
 - Is K₄ (shown in Figure 2 with two edges crossing) planar?
 - Solution: K₄ is planar because it can be drawn without crossing, as shown in Figure 3.

- □ Example 2 (page 658)
 - Is Q₃ shown in Figure 4, planar?
 - Solution
 - Q₃ is planar, because it can be drawn without any edges crossing, as shown in Figure 5.

- □ Is $K_{3,3}$, shown in Figure 6, planar?
 - Solution
 - Any attempt to draw K3,3 in the plane with no edges crossing is doomed (失败的).
 - 现在来说明为什么。在K₃的任何平面表示 里,顶点v₁和v₂都必须同时与v₄和v₅连接。这 四条边所形成的封闭曲线把平面分割成两个区 域R₁和R₂,如图7(a)所示。顶点v₃属于R₁或 R₂。当v₃属于闭曲线的内部R₂时,在v₃和v₄之 间以及在v₃和v₅之间的边,把R₂分割成两个区 域R₂₁和R₂₂,如图7(b)所示。

- □ Is $K_{3,3}$, shown in Figure 6, planar?
 - Solution(cont.)
 - 下一步。注意没有办法来放置最后一个顶点v₆而 又不迫使发生交叉。因为若v₆属于R₁,则不能不 带交叉地画出v₆和v₃之间的边。若v₆属于R₂₁,则 不能不带交叉地画出v₂和v₆之间的边。若v₆属于 R₂₂,则不能不带交叉地画出v₁和v₆之间的边 当v₃属于R₁时,可以使用类似的论证。所以, K_{3,3}是非平面图。

2. Euler's Formula

- □ The Regions of a Planar Graph
 - See Figure 8 (page 660)
 - **•** For this planar graph, we have:

r=6 (区域数) e=11 (边数) v=7

- 2. Euler's Formula
- □ Theorem 1(Euler's Formula, page 606)
 - Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r=e-v+2.
 - 证明
 - look at the blackboard or book.

- 2. Euler's Formula
- □ Example 4 (page 661)
 - Suppose that a connected planar simple graph has 20 vertices, each of degree 3.
 Into how may regions does a representation of this planar graph split the plane?
 - Solution:
 - **a** $2e = 3 \cdot 20$, e = 30
 - r = e v + 2 = 30 20 + 2 = 12

- 2. Euler's Formula
- □ Corollary 1 (page 661)
 - If G is a connected planar simple graph with e edges and v vertices where v≥3, then e≤3v-6.
 - Proof:
 - Look at the blackboard and book.
 - The detailed proof is in page 608 with the help of the concept of the degree of a region (区域的度)

2. Euler's Formula

□ Corollary 2 (page 661)

- If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.
- □ Proof
 - If G has one or two vertices, the result is true.
 - If G has at least three vertices, by Corollary 1 we know that e≤3v-6, so 2e ≤6v-12. If the degree of every vertex were at least six (用反 证法), then we would have 2e≥6v. But this contradicts the inequality 2e ≤6v-12. It follows that there must be a vertex with degree no greater than five.

- 2. Euler's Formula
- □ Example 5 (page 662)
 - Show that K₅ is nonplanar using Corollary 1.
 - Solution
 - The graph K_5 has five vertices and ten edges. However, the inequality $e \leq 3v-6$ is not satisfied for this graph since e=10and 3v-6=9.
 - **D** Therefore, K₅ is not planar.

2. Euler's Formula

□ Corollary 3 (page 662)

- If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length three, then $e \le 2v-4$
- □ Example 6 (page 663)
 - Use Corollary 3 to show that K3,3 is nonplanar.
 - Solution:
 - Since K_{3,3} has no circuits of length three, Corollary 3 can be used. K_{3,3} has six vertices and nine edge.
 - Since e=9 and 2v-4=8, Corollary 3 shows that $K_{3,3}$ is nonplanar.

- 3. Kuratowski's Theorem
- Introduction (page 663)
 - $K_{3,3}$ and K_5 are not planar.
 - All nonplanar graphs must contain a subgraph that can be obtained from K_{3,3} or K₅ using certain permitted operations.

- 3. Kuratowski's Theorem
- Operation----Elementary Subdivision (初等细分或剖分)
 - Elementary subdivision
 - If {u, v} is an edge, then remove this edge and add a new vertex with edges {u, w} and {w, v}.
 - Homeomorphism (同胚)
 - The graphs G₁=(V₁,E₁) and G₂=(V₂,E₂) are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision.

3. Kuratowski's Theorem

- Operation----Elementary Subdivision (初等细 分或剖分)
 - Elementary subdivision
 - If {u, v} is an edge, then remove this edge and add a new vertex with edges {u, w} and {w, v}.
 - Homeomorphism (同胚)
 - The graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision.
 - The three graphs in Figure 12 (page 610) are homeomorphic

3. Kuratowski's Theorem

- □ Theorem 2 (page 664)
 - A graph is nonplanar if and only if it contains a subgraph homeomorphic to K_{3,3} or K₅.
- Example 8 (page 610)
 - Determine whether the graph G shown in Figure 13 is planar?
 - Solution:
- □ Example 9 (page 610)
 - Is the Petersen graph, shown in Figure 14(a), planar?

Homework

□ Page 665~666

- 2, 3(read), 4, 5(read), 6, 7(read), 8,
- 9(read), 12, 14, 16, 18, 20, 24