Chapter 9 Graphs

9.7 Planar Graph

1．Introduction

－Introduction
－Example 0 （page 657～658）
－Is it possible to join these houses and utilities so that none of the connections cross？
－Solution：
－The problem can be modeled using the complete bipartite graph $\mathrm{K}_{3,3}$ ．
－Can $K_{3,3}$ be drawn in the plane so that no two of its edges cross？

1．Introduction

－Definition 1 （page 658）
－A graph is called planar if it can be drawn in the plane without any edges crossing（where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common point）．Such a drawing is called a planar representation of the graph．
－Example 1 （page 658）
－Is K_{4}（shown in Figure 2 with two edges crossing）planar？
－Solution： K_{4} is planar because it can be drawn without crossing，as shown in Figure 3.

1．Introduction

－Example 2 （page 658）
－Is Q_{3} shown in Figure 4，planar？
Solution
－Q_{3} is planar，because it can be drawn without any edges crossing，as shown in Figure 5.

1．Introduction

－Is $\mathrm{K}_{3,3}$ ，shown in Figure 6，planar？

－Solution

－Any attempt to draw K3，3 in the plane with no edges crossing is doomed（失败的）．
－现在来说明为什么。在 K_{33} 的任何平面表示里，顶点 v_{1} 和 v_{2} 都必须同时与 v_{4} 和 v_{5} 连接。这四条边所形成的封闭曲线把平面分割成两个区域 R_{1} 和 R_{2} ，如图7（a）所示。顶点 v_{3} 属于 R_{1} 或 $R_{2} \circ$ 当 v_{3} 属于闭曲线的内部 R_{2} 时，在 v_{3} 和 v_{4} 之间以及在 V_{3} 和 v_{5} 之间的边，把 R_{2} 分割成两个区域 R_{21} 和 R_{22} ，如图7（b）所示。

1．Introduction

－Is K ${ }_{3,3}$ ，shown in Figure 6，planar？
－Solution（cont．）
－下一步。注意没有办法来放置最后一个顶点 v_{6} 而又不迫使发生交叉。因为若 v_{6} 属于 R_{1} ，则不能不带交叉地画出 v_{6} 和 v_{3} 之间的边。若 v_{6} 属于 R_{21} ，则不能不带交叉地画出 v_{2} 和 v_{6} 之间的边。若 v_{6} 属于 R_{22} ，则不能不带交叉地画出 v_{1} 和 v_{6} 之间的边当 v_{3} 属于 R_{1} 时，可以使用类似的论证。所以， $\mathrm{K}_{3,3}$ 是非平面图。

2．Euler＇s Formula

 The Regions of a Planar Graph See Figure 8 （page 660） －For this planar graph，we have：$$
\begin{aligned}
& r=6 \text { (区域数) } \\
& e=11 \text { (边数) } \\
& v=7
\end{aligned}
$$

－They satisfy the equation $\mathrm{r}=\mathrm{e}-\mathrm{v}+2$ ．

2．Euler＇s Formula

－Theorem 1（Euler＇s Formula，page 606）
－Let G be a connected planar simple graph with e edges and v vertices．Let r be the number of regions in a planar representation of G ．Then $\mathrm{r}=\mathrm{e}-\mathrm{v}+2$ ．
－证明
－look at the blackboard or book．

2．Euler＇s Formula

－Example 4 （page 661）
－Suppose that a connected planar simple graph has 20 vertices，each of degree 3. Into how may regions does a representation of this planar graph split the plane？
－Solution：

$$
\begin{array}{ll}
\text { ㅁ } & 2 e=3 \cdot 20, \quad e=30 \\
\text { - } & r=e-v+2=30-20+2=12
\end{array}
$$

2．Euler＇s Formula

－Corollary 1 （page 661）
－If G is a connected planar simple graph with e edges and v vertices where $v \geqslant 3$ ， then $e \leqslant 3 v-6$ ．
－Proof：
－Look at the blackboard and book．
－The detailed proof is in page 608 with the help of the concept of the degree of a region（区域的度）

2．Euler＇s Formula

－Corollary 2 （page 661）
－If G is a connected planar simple graph，then
G has a vertex of degree not exceeding five．
－Proof
－If G has one or two vertices，the result is true．
－If G has at least three vertices，by Corollary 1 we know that $e \leqslant 3 v-6$ ，so $2 e \leqslant 6 v$－12．If the degree of every vertex were at least six（用反证法），then we would have $2 \mathrm{e} \geqslant 6 \mathrm{v}$ ．But this contradicts the inequality $2 \mathrm{e} \leqslant 6 \mathrm{v}$－ 12 ．It follows that there must be a vertex with degree no greater than five．

2．Euler＇s Formula

－Example 5 （page 662）
－Show that K_{5} is nonplanar using Corollary 1.
－Solution
－The graph K_{5} has five vertices and ten edges．However，the inequality $\mathrm{e} \leqslant 3 \mathrm{v}-6$ is not satisfied for this graph since $\mathrm{e}=10$ and $3 v-6=9$ ．
－Therefore， K_{5} is not planar．

2．Euler＇s Formula

－Corollary 3 （page 662）
－If a connected planar simple graph has e edges and v vertices with $v \geqslant 3$ and no circuits of length three，then $e \leqslant 2 v-4$
－Example 6 （page 663）
－Use Corollary 3 to show that K3，3 is nonplanar．
－Solution：
－Since $K_{3,3}$ has no circuits of length three， Corollary 3 can be used． $\mathrm{K}_{3,3}$ has six vertices and nine edge．
－Since $\mathrm{e}=9$ and $2 \mathrm{v}-4=8$ ，Corollary 3 shows that $K_{3,3}$ is nonplanar．

3．Kuratowski’s Theorem

－Introduction（page 663）
－ $\mathrm{K}_{3,3}$ and K_{5} are not planar．
－All nonplanar graphs must contain a subgraph that can be obtained from $K_{3,3}$ or K_{5} using certain permitted operations．

3．Kuratowski＇s Theorem

－Operation－－－－－Elementary Subdivision （初等细分或剖分）
－Elementary subdivision
－If $\{u, v\}$ is an edge，then remove this edge and add a new vertex with edges $\{u, w\}$ and $\{w, v\}$ ．
－Homeomorphism（同肧）
－The graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision．

3．Kuratowski＇s＇Theorem

－Operation－－－－－Elementary Subdivision（初等细分或剖分）
－Elementary subdivision
－If $\{u, v\}$ is an edge，then remove this edge and add a new vertex with edges $\{u, w\}$ and $\{w, v\}$ ．
－Homeomorphism（同胚）
－The graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision．
－The three graphs in Figure 12 （page 610）are homeomorphic

3．Kuratowski’s Theorem

－Theorem 2 （page 664）
－A graph is nonplanar if and only if it contains a subgraph homeomorphic to $\mathrm{K}_{3,3}$ or K_{5} ．
－Example 8 （page 610）
－Determine whether the graph G shown in Figure 13 is planar？
－Solution：
－Example 9 （page 610）
－Is the Petersen graph，shown in Figure 14（a）， planar？

Homework

－Page 665～666
－2，3（read），4，5（read），6，7（read），8，
－9（read），12，14，16，18，20， 24

