Chapter 9 Graphs

9.7 Planar Graph



1. Introduction

o Introduction

= Example O (page 657—658)

o Is it possible to join these houses and
utilities so that none of the connections
Cross?

o Solution:

— The problem can be modeled using the
complete bipartite graph Kj 5.

— Can K; 5 be drawn in the plane so that no two of
Its edges cross?
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1. Introduction

a0 Definition 1 (page 658)

= A graph is called planar if it can be drawn In
the plane without any edges crossing (where a
crossing of edges is the intersection of the
lines or arcs representing them at a point
other than their common point). Such a
drawing is called a planar representation of
the graph.

0 Example 1 (page 658)

= Is K, (shown in Figure 2 with two edges
crossing) planar?

= Solution:K, is planar because it can be drawn
without crossing, as shown in Figure 3.

Software Engineering Mathematics SEI of ECNU AU fi© 3



1. Introduction

a0 Example 2 (page 658)
= Is Q; shown In Figure 4, planar?

s Solution

o Qs Is planar, because it can be drawn
without any edges crossing, as shown in
Figure 5.
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1. Introduction

0 Is K33, shown in Figure 6, planar?

s Solution

o Any attempt to draw K3,3 In the plane
with no edges crossing is doomed (k%

7).
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1. Introduction

0 Is K33, shown in Figure 6, planar?

= Solution(cont.)
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2. Euler’s Formula

a2 The Regions of a Planar Graph

= See Figure 8 (page 660)
o For this planar graph, we have:

r=6 (X140
e=11 (IL%D)
v=/
o They satisfy the equation r=e-v+2.
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2. Euler’s Formula

o Theorem 1(Euler’'s Formula, page 606)

= Let G be a connected planar simple
graph with e edges and v vertices. Letr
be the number of regions in a planar
representation of G. Then r=e-v+2.

RIS

o look at the blackboard or book.
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2. Euler’s Formula

a0 Example 4 (page 661)

s Suppose that a connected planar simple
graph has 20 vertices, each of degree 3.
Into how may regions does a
representation of this planar graph split
the plane?

s Solution:
o 2e=3.20, e=30
o r=e-v+2 = 30-20+2 =12
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2. Euler’s Formula

0 Corollary 1 (page 661)

= If G iIs a connected planar simple graph
with e edges and v vertices where v=3,

then e<3v-6.

s Proof:
o Look at the blackboard and book.

o The detailed proof is in page 608 with
the help of the concept of the degree of

a region (X1 1E)
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2. Euler’s Formula

a Corollary 2 (page 661)

» If Gis a connected planar simple graph, then
G has a vertex of degree not exceeding five.

a Proof

s If G has one or two vertices, the result is true.

= If G has at least three vertices, by Corollary 1
we know that ex3v-6, so 2e <6v-12. If the
degree of every vertex were at least six (JH %
1), then we would have 2e =6v. But this
contradicts the inequality 2e <6v-12. It
follows that there must be a vertex with
degree no greater than five.
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2. Euler’s Formula

a0 Example 5 (page 662)

= Show that K. Is nonplanar using
Corollary 1.

x  Solution

o The graph Kg has five vertices and ten
edges. However, the inequality ex3v-6
IS not satisfied for this graph since e=10
and 3v-6=9.

o Therefore, K; Is not planar.
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2. Euler’s Formula

a Corollary 3 (page 662)

= |If a connected planar simple graph has e
edges and v vertices with v=3 and no circuits
of length three, then ex2v-4

0 Example 6 (page 663)
= Use Corollary 3 to show that K3,3 is nonplanar.

s Solution:

o Since K; ; has no circuits of length three,
Corollary 3 can be used. K; ; has six vertices
and nine edge.

o Since e=9 and 2v-4=8, Corollary 3 shows that
K; 5 IS nonplanar.
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3. Kuratowski’s Theorem

0 Introduction (page 663)
= K;;and Ky are not planar.

= All nonplanar graphs must contain a
subgraph that can be obtained from K;
or K; using certain permitted operations.

Software Engineering Mathematics SEI of ECNU AU fi© 14



3. Kuratowski’s Theorem

0O Operation----- Elementary Subdivision
(W15 41 73 B 3
= Elementary subdivision

o If {u, v} is an edge, then remove this
edge and add a new vertex with edges
{u, w} and {w, v}.

= Homeomorphism (J7 1)

o The graphs G,=(V,E,;) and G,=(V,,E,)
are called homeomorphic if they can be
obtained from the same graph by a
seguence of elementary subdivision.
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3. Kuratowski’s Theorem

a Operation----- Elementary Subdivision (#]Z54H
73 BH 1)
= Elementary subdivision

o |If {u, v} is an edge, then remove this edge and
add a new vertex with edges {u, w} and {w, v}.

=  Homeomorphism (JF]iF)

o The graphs G,=(V,,E;) and G,=(V,,E,) are
called homeomorphic if they can be obtained
from the same graph by a sequence of
elementary subdivision.

= The three graphs in Figure 12 (page 610) are
homeomorphic
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3. Kuratowski’s Theorem

o Theorem 2 (page 664)

= A graph is nonplanar if and only if it contains a
subgraph homeomorphic to K; 5 or Ks.

a0 Example 8 (page 610)

=  Determine whether the graph G shown In
Figure 13 is planar?

= Solution:
0 Example 9 (page 610)

s Is the Petersen graph, shown in Figure 14(a),
planar?
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Homework

a0 Page 665—666
s 2, 3(read), 4, 5(read), 6, 7(read), 8,
= 9(read), 12, 14, 16, 18, 20, 24
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