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The k-nearest neighbours (kNN) is a simple but effective method for classification. Its major
drawbacks are (1) low efficiency, and (2) dependency on the selection of a “good value” for k. In
this paper, we propose a novel similarity-based data reduction method (SBModel) together with
three variants aimed at overcoming these shortcomings. Our method constructs a similarity-based
model for the data, which replaces the data to serve as the basis of classification. The value of k is
automatically determined, is varied in terms of local data distribution, and is optimal in terms of
classification accuracy. The construction of the model significantly reduces the amount of data
needed for classification, thus making classification faster. Experiments conducted on some public
data sets show that SBModel and its variants compare well with C5.0, kNN, wkNN, and other data
reduction methods in both efficiency and effectiveness. 
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1. INTRODUCTION
The k-nearest neighbours (kNN) is a non-parametric classification method which is simple but
effective in many cases (Hand et al, 2001). For an instance dt to be classified, its k nearest neighbours
are retrieved, and this forms a neighbourhood of dt. Majority voting among the instances in the
neighbourhood is commonly used to decide the classification for dt, with or without consideration of
distance-based weighting. Despite its conceptual simplicity, the kNN method performs as well as any
other possible classifier when applied to non-trivial problems. Over the last 50 years, this simple
classification method has been extensively used in a broad range of applications such as medical
diagnosis, text categorization (Sebastiani, 2002), pattern recognition, data mining, and e-commerce.
However, to apply kNN we need to choose an appropriate value for k, and the success of classification
is very much dependent on this value. In a sense, the kNN method is biased by k. There are many ways
of choosing the k value, and a simple one is to run the algorithm many times with different k values
and choose the one with the best performance, but this is not a pragmatic method in real applications.
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In order for kNN to be less dependent on the choice of k, we look at multiple sets of nearest
neighbours rather than just one set of k nearest neighbours in Wang (2003). The proposed formalism
is based on contextual probability, and the idea is to aggregate the support of multiple sets of nearest
neighbours for various classes to give a more reliable support value, which better reveals the true
class of dt. As it is aimed at improving classification accuracy and alleviating the dependency on k,
the efficiency of the method in its basic form is expected to be worse than kNN. However, it is indeed
less dependent on k and is able to achieve classification performance close to that for the best k. 

From the point of view of implementation, the kNN method consists of a search of pre-labelled
instances given a particular distance definition to find k nearest neighbours for each new instance.
If the number of instances available is very large, the computational burden for kNN is unbearable.
This drawback prohibits its use in many applications, such as dynamic web mining from a large
document repository. 

These drawbacks of kNN motivate us to find a way of instance reduction which chooses a few
representatives to be stored for use for classification in order to improve efficiency whilst both
preserving its classification accuracy and alleviating the dependency on k.

2. RELATED WORK
Many researchers in automatic classification have devoted extensive resources to solving either the
computational problem and/or the performance problem during the past 50 years. Among those
methods, instance selection aims at modifying a given set of instances in order to reduce its size as
well as to improve classification performance. From the point of view of their goal, those instance
selection methods can be divided into two different kinds of methods: the editing and condensing
methods (Devijver et al, 1982). The editing methods aim at removing outliers and instances which
are placed at the overlap among classes. These types of methods e.g. ENN (Wilson, 1972), RENN
(Wilson, 1972), and AllK-NN (Tomek, 1976), do not generally entail substantial reductions in size,
but they usually produce well-clustered groups of homogeneous instances that lead to optimal kNN
classification results (Wilson et al, 2000). On the other hand, condensing methods, e.g. CNN (Hart,
1968), SNN (Ritter et al, 1975), IB1~IB5 (Aha et al, 1991; 1992), DROP1~DROP5 and DEL
(Wilson et al, 2000), try to find a significantly reduced set of instances whose kNN classification
results are as close as possible to those obtained using all original instances.

From the way in which representatives are obtained and represented in these methods, there is
a separation between instance selection methods, in which the resulting representatives are taken
from the original set, and instance replacement methods in which the resulting representatives are
built and may be different from any instances in the original set. Representatives obtained by either
of these methods can be referred to as S- and R-representatives (Liudmila et al, 1998) respectively. 

2.1 Instance Selection Methods
Many researchers have addressed the problem of training set size reduction. Hart (1968) made one
of the first attempts to reduce the size of the training set with his Condensed Nearest Neighbour
Rule (CNN). His algorithm finds a subset S of the training set T such that every instance of T is
closer to an instance of S of the same class than to an instance of S of a different class. In this way,
the subset S can be used to classify all the instances in T correctly. 

Ritter et al (1975) extended the condensed NN method in their Selective Nearest Neighbour Rule
(SNN) such that every instance of T must be closer to an instance of S of the same class than to any
instance of T (instead of S) of a different class. Further, the method ensures a minimal subset
satisfying these conditions. 
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Gate (1972) introduced the Reduced Nearest Neighbour Rule (RNN). The RNN algorithm starts
with S=T and removes each instance from S if such a removal does not cause any other instances in
T to be misclassified by the instances remaining in S. 

Wilson (1972) developed the Edited Nearest Neighbour (ENN) algorithm in which S starts out
the same as T, and then each instance in S is removed if it does not agree with the majority of its k
nearest neighbours. The Repeated ENN (RENN) applies the ENN algorithm repeatedly until all
instances remaining have a majority of their neighbours with the same class, which continues to
widen the gap between classes and smooth the decision boundary. 

Tomek (1976) extends the ENN with his Allk-NN method of editing. This algorithm works as
follows: for i=1 to k, flag as “bad” any instance not classified correctly by its i nearest neighbours.
After completing the loop all k times, remove any instances from S flagged as “bad”. 

Cameron-Jones (1995) proposed the use of an encoding length heuristic with his ELGrow to
determine how good the subset S is in describing T. ELGrow is based on a cost function used to
quantify an instance-based model. It begins with a growing phase that takes each instance i in T and
adds it to S if that results in a lower cost than not adding it. Cameron-Jones also extended ELGrow
with his Explore method. It starts by growing and reducing S using the ELGrow method, and then
performs a predefined number of mutations to try to improve the classifier. Each mutation tries
adding an instance to S, removing one from S, or swapping one in S with one in T-S. It keeps the
change if it does not increase the cost of the classifier. 

Other S-representatives methods include IB1~IB5 by Aha et al (1991; 1992), DROP1~DROP5,
and DEL by Wilson et al (2000). 

2.2 Instance Replacement Methods
Following the basic idea of replacing a group of instances by a representative, some researchers
have proposed iterative solutions to build consistent sets of representatives via merging. Chang’s
condensing method (Chang, 1974) was based on this strategy. It begins with a training set T,
considering all the instances in T as initial representatives, and then successively merges any two
closest representatives (p, q) of the same class (by replacing p and q with a new representative p*)
if the merging does not degrade the classification of instances in T. The new representative p* is
computed as a weighted average between p and q. This process is stopped when no new merge is
possible in any class. 

The modified Chang Algorithm (MCA) presented by Bezdek et al (1998) constitutes a slight
improvement of the previous algorithm. Compared to the original algorithm of Chang (1974), the
MCA changes the algorithm in the way in which pairs of prototypes are considered, introducing a
slightly different way of merging prototypes. A computational improvement is also reached based
on storing cross distances among prototypes in the same class only. The simple arithmetic mean
between p and q is used to compute p* without weights. Nevertheless, the strategy behind the
original idea remains unchanged. 

The RISE 2.0 system presented by Domingos (1995) treats each instance in T as a rule in R. For
each rule r in R, the nearest instance t in T of the same class as r is found that is not yet covered by
r. The rule r is then minimally generalized to cover t, unless that reduces accuracy. This process is
repeated until no rules are generalized during an entire pass through all the rules in R. During the
generalization, the nearest rule to a new instance is used to provide the output class. If two rules are
equally close, the one with higher generalization accuracy on the training set is used.

Wettschereck et al (1995) introduced a hybrid nearest-neighbour and nearest-hyperrectangle
algorithm that uses hyperrectangles to classify new instances if they fall inside the hyperrectangle, and
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kNN to classify instances which fall outside any hyperrectangle. This algorithm must store the entire
training set T, but accelerates classification by using relatively few hyperrectangles whenever possible.

A generalized condensing scheme based on class-conditional hierarchical clustering (GMCA) is
proposed by Mollineda et al (2002). The basic idea is to replace a group of instances by a
representative while keeping the consistency property. The algorithm improves and generalizes
previous works by explicitly introducing the concept of cluster consistency. The use of geometric
cluster properties produces a merging scheme based on local consistency verification, guaranteeing
the whole system’s consistency while minimizing the computation needed. 

In the next section, we introduce a hybrid S-representatives and R-representatives method called
SBModel (Similarity-Based Model). The method constructs a similarity-based model by selecting
a subset S (S-representatives) with some extra information (R-representatives) from the training set
T, to replace the data and serve as the basis of classification. The model consists of a set of
representatives of the training data, as regions in the data space. Based on SBModel, three variants
of SBModel: ε-SBModel, p-SBModel, SBModel-i are also presented, which aim at further
improving both the efficiency and effectiveness of SBModel. The experimental results and a
comparison with other data reduction methods in the literature are presented in Section 4. 

3. SIMILARITY-BASED DATA REDUCTION
3.1 The SBModel Concept
Looking at Figure 1, the Iris data with two features, petal length and petal width, is used for
demonstration. It contains 150 instances with three classes represented as square, triangle, and
diamond respectively, and is plotted in 2-dimensional data space. In Figure 1, the horizontal axis is
for petal length and the vertical axis is for petal width.

If we use distance function as our similarity measure, many instances with the same class label
are close to each other in many local areas. Consider Figure 2, for example. In each local region, the
central instance di, with some extra information such as Cls(di) – the class label of instance di; Num(di)
– the number of instances inside the local region; Sim(di) – the distance of the furthest instance inside
the local region to di, and Rep(di) – a representation of di, might be a good representative of this local
region. If we take these representatives as a model to represent the whole training set, it will signif-
icantly reduce the number of instances for classification, thereby improving efficiency.

Figure 1: Data distribution in 2-dimensional data space 
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In addition, the extra information kept in each representative is used to represent those instances
that are covered by this representative and have been removed. The goal of keeping such
information is an attempt to reduce the information loss during the process of instances removal.
The extra information kept in each representative is obtained by inductively learning from the
training set. Thereby it is expected to preserve or possibly improve the effectiveness of kNN.

Consider a new instance to be classified at the classification stage. If it is covered by a
representative it will be classified by the class label of this representative. If not, we calculate the
distance of the new instance to each representative’s nearest boundary and take each
representative’s nearest boundary as an instance, then classify the new instance in the spirit of kNN. 

3.2 Terminology and Definitions
Before we give more details about the designs of the proposed algorithms, some important terms
(or concepts) need to be explicitly defined first. 

Definition 1. Neighbourhood
A neighbourhood is a contextual term with respect to a given instance in data space. A

neighbourhood of a given instance is defined to be a set of nearest neighbours around this instance.

Definition 2. Local Neighbourhood
A local neighbourhood is a neighbourhood which covers the maximal number of instances with

the same class label.

Definition 3. Local ε-Neighbourhood
A local ε-neighbourhood is a neighbourhood which covers the maximal number of instances

with the same class label except for allowing ε exceptions.

Definition 4. Local i-Consistent Neighbourhood
A local i-consistent neighbourhood is a neighbourhood which covers the maximal number of

instances, each of which is correctly classified by the same class label using kNN (where k=i).

Definition 5. Global Neighbourhood
A global neighbourhood is a local neighbourhood which covers the largest number of instances

among a set of obtained local neighbourhoods.

Figure 2: The first obtained representative <Cls(di) Sim(di), Num(di), Rep(di)>
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Definition 6. Global ε-Neighbourhood
A global ε-neighbourhood is a local ε-neighbourhood which covers the largest number of

instances among a set of obtained local ε-neighbourhoods.

Definition 7. Global i-Consistent Neighbourhood
A global i-consistent neighbourhood is a local i-consistent neighbourhood which covers the

largest number of instances among a set of obtained local i-consistent neighbourhoods.

With these definitions, given a training set, each instance has a local neighbourhood. Based on
these local neighbourhoods, the global neighbourhood can be obtained. This global neighbourhood
can be seen as a representative of all the instances covered by it. For instances not covered by any
representative we repeat the above operation until all the instances have been covered by chosen
representatives. At the end, all representatives obtained in the model construction process are used
for replacing the data and serving as the basis for classification. There are three obvious advantages:
(1) we needn’t choose a specific k in the sense of kNN for our method in the model construction
process; the number of instances covered by a representative can be seen as an optimal k, which is
generated automatically in the model construction process, but it is different for different
representatives; (2) using a set of chosen representatives as a model reduces the number of instances
for classification, thus improving the efficiency of classification; (3) keeping some important
information for the removed instances in each representative can minimize the information loss
during the process of instances removal, thus preserving or possibly improving the classification
accuracy. From this point of view, the proposed method overcomes the two shortcomings of kNN
whilst preserving its effectiveness. 

3.3 Modelling and Classification Algorithm
Let D be a collection of n class-known instances {d1, d2, …, dn}. Given a similarity measure, the
detailed model construction algorithm of SBModel is described as follows:

1. For a given similarity measure create a similarity matrix from a given training set D
2. Set to “ungrouped” the tag of all instances for training and set model M=Ø
3. For each “ungrouped” instance, find its local neighbourhood
4. Among all the local neighbourhoods obtained in step 3, find its global neighbourhood Ni. Create

a representative (Cls(di), Sim(di), Num(di), Rep(di)) into M to represent all the instances covered
by Ni, and then set to “grouped” the tag of all the instances covered by Ni

5. Repeat step 3 and step 4 until all the instances in the training set have been set to “grouped”
6. Model M consists of all the representatives collected from the above learning process.

In this algorithm, symbol M represents a set used to store the created model (a set of
representatives). The elements of representative <Cls(di), Sim(di), Num(di), Rep(di)> respectively
represent the class label of di; the similarity of di to the furthest instance among the instances
covered by Ni; the number of instances covered by Ni, and a representation of instance di. In step 4,
if there are more than one local neighbourhood having the same maximal number of neighbours, we
choose the one with minimal value of Sim(di), i.e. the one with highest density, as a representative. 

The detailed classification algorithm of SBModel is described as follows:

1. For a new instance dt to be classified, calculate its similarity to all representatives in the model M
2. If dt is covered by only one representative <Cls(di), Sim(di), Num(di), Rep(di)>, dt is classified

as Cls(di)
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3. If dt is covered by more than one representative with different class labels, classify dt as the class
label of the representative covering the largest number of instances

4. If no representative in the model M covers dt, classify dt as the class label of the representative
whose boundary is closest to dt.

In the above algorithm, an instance dt is said to be covered by a representative <Cls(di), Sim(di),
Num(di), Rep(di)> if the similarity of dt to di is equal to or smaller than Sim(di). The similarity of dt

to a representative di’s nearest boundary is equal to the difference of the similarity of di to dt, minus
Sim(di).

In order to improve the classification accuracy of SBModel, we implemented three different
pruning methods for SBModel. 

The first pruning method removes both the representatives from the model M created by
SBModel that only cover a few instances and the instances covered by these representatives from
the training set. Then set M=Ø and construct the M again using SBModel from the revised training
set. The SBModel algorithm based on this pruning method is called p-SBModel. 

The model construction process of p-SBModel is described as follows:

1. For each representative in the model M created by SBModel that only covers a few (a predefined
threshold) instances, remove all the instances covered by this representative from the training
set D, then go to step 2

2. Set model M =Ø and construct model M from the revised training set D again by using SBModel
3. The final model M consists of all the representatives collected from the above pruning process.

The second pruning method modifies step 3 in the model construction algorithm of SBModel to
allow each local neighbourhood to cover ε (called error tolerance rate) instances with different class
labels to the majority class label of this neighbourhood. This modification integrates the pruning work
into the model construction process of SBModel. The SBModel algorithm based on this pruning
method is called ε-SBModel. The detailed modelling process of ε-SBModel is described as follows:

1. For a given similarity measure, create a similarity matrix from a given training set D
2. Set to “ungrouped” the tag of all instances for training and set model M=Ø
3. For each “ungrouped” instance, find its local ε-neighbourhood
4. Among all the local ε-neighbourhoods obtained in step 3, find its global ε-neighbourhood Ni.

Create a representative <Cls(di), Sim(di), Num(di), Rep(di)> into M to represent all the instances
covered by Ni, and then set to “grouped” the tag of all the instances covered by Ni

5. Repeat step 3 and step 4 until all the instances in the training set have been set to “grouped”
6. Model M consists of all the representatives collected from the above learning process.

The last pruning method uses local i-consistent neighbourhood (i>0) to construct the model, i.e.
in the modelling process, all the instances in a representative must be classified correctly by iNN.
The SBModel algorithm based on this pruning method is called SBModel-i. The detailed modelling
process of SBModel-i is described as follows: 

1. For a given similarity measure, create a similarity matrix from a given training set D
2. Set to “ungrouped” the tag of all instances for training and set model M=Ø
3. For each “ungrouped” instance, find its local i-consistent neighbourhood
4. Among all the local i-consistent neighbourhoods obtained in step 3, find its global i-consistent

neighbourhood Ni. Create a representative <Cls(di), Sim(di), Num(di), Rep(di)> into M to



Similarity-Based Data Reduction Techniques

Journal of Research and Practice in Information Technology, Vol. 37, No. 2, May 2005218

represent all the instances covered by Ni, and then set to “grouped” the tag of all the instances
covered by Ni

5. Repeat step 3 and step 4 until all the instances in the training set have been set to “grouped”
6. Model M consists of all the representatives collected from the above learning process.

The SBModel algorithm is a basic algorithm with ε = 0 (error tolerance rate), i=0 (i-consistent
neighbourhood), and without pruning (p=0). The experimental results of SBModel, ε-SBModel,
p-SBModel, and SBModel-i conducted on some public data sets are reported in the Section 4. 

3.4 An Example of ε-SBModel
To grasp the idea here, the best way is by means of an example, so we graphically illustrate the
model construction process of ε-SBModel. 

A training data set including 150 instances is divided into three classes denoted as diamond,
square, and triangle respectively. The distribution of instances in 2-dimensional data space is plotted
in Figure 1. 

The error tolerance rate ε is set to 1, i.e. in the model construction process, each representative
is allowed to cover one instance with different class label from the majority one. The first three
representatives obtained from the model construction process are shown in Figure 3, and the final
model obtained from the data by employing ε-SBModel is shown in Figure 4. 

In Figure 3, after the first cycle, we obtain the first representative <Cls(dk), Sim(dk), Num(dk),
Rep(dk)>, add it into the model M, and then turn to the next cycle. At the end of the second cycle
we add another obtained representative <Cls(dj), Sim(dj), Num(dj), Rep(dj)> into the model M.
Repeat this process until all the instances in the training set have been set to “grouped” (covered by
any circle). At the end, eight representatives shown in Figure 4 are obtained from the training set.
Five of eight representatives cover at least two instances each; these are stored in the model M of
ε-SBModel. The other three representatives which cover only one instance each can be discarded
as noise.  

In Figure 5, there are five crosses “+” which represent the new instances to be classified.
According to the classification algorithm described in Section 3.3, these five instances are
respectively classified as diamond, triangle, triangle, square, and square from left to right.

Figure 3: The first three obtained representatives in the model construction process of ε-SBModel
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4. EXPERIMENT AND EVALUATION
4.1 Data Sets
To evalutate the SBModel method and its variants, fifteen public data sets have been collected from
the UCI machine learning repository for training and testing. Some information about these data
sets is given in Table 1.

In Table 1, the meaning of the title in each column is follows: NF-Number of Features, NN-
Number of Nominal features, NO-Number of Ordinal features, NB-Number of Binary features, NI-
Number of Instances, CD-Class Distribution.

4.2 Experimental Environment
Experiments use the 10-fold cross validation method to evaluate the performance of SBModel and
its variants and to compare them with C5.0, kNN (voting kNN), and wkNN (distance weighted
kNN). We implemented SBModel and its variants, kNN and wkNN in our prototype. The C5.0
algorithm used in our experiment is implemented in the Clementine software package. The

Figure 4: The final model created by ε-SBModel

Figure 5: The distribution of five new instances denoted as “+”
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experimental results for other editing and condensing algorithms to be compared here are obtained
from Wilson’s reported experiments (Wilson et al, 2000).

In voting kNN, the k neighbours are implicitly assumed to have equal weight in decisions,
regardless of their distances to an instance d to be classified. It is intuitively appealing to give
different weights to the k neighbours based on their distances to d, with closer neighbours having
greater weights. 

In wkNN, the k neighbours are assigned different weights. Let ∆ be a distance function, and d1,
d2, …, dk be the k nearest neighbours of d arranged in increasing order of ∆(di, d). So d1 is the first
nearest neighbour of d. The distance weight wi for i-th neighbour di is defined as follows: 

(1)

Instance d is assigned to the class for which the weights of the representatives among the k
nearest neighbours sum to the greatest value. 

In order to handle heterogeneous applications – those with both ordinal and nominal features –
we use a heterogeneous distance function HVDM (Wilson et al, 1997) as the distance function in
the experiments, which is defined as:

(2)

In formula (2), instance x→ is represented as a vector of values (x1, x2, …, xm), where xi is a value
occurring in the ith feature and m is the number of features; ∆(xk, yk) is the distance function of two
values xk, yk occurring in the kth feature and is defined (Wilson et al, 1997) as:

Data set NF NN NO NB NI CD
Australia 14 4 6 4 690 383:307
Colic 23 16 7 0 368 232:136
Diabetes 8 0 8 0 768 268:500
Glass 9 0 9 0 214 70:17:76:0:13:9:29
HCleveland 13 3 7 3 303 164:139
Heart 13 3 7 3 270 120:150
Hepatitis 19 6 1 12 155 32:123
Ionosphere 34 0 34 0 351 126:225
Iris 4 0 4 0 150 50:50:50
LiverBupa 6 0 6 0 345 145:200
Sonar 60 0 60 0 208 97:111
Vehicle 18 0 18 0 846 212:217:218:199
Vote 16 0 0 16 435 267:168
Wine 13 0 13 0 178 59:71:48
Zoo 16 16 0 0 90 37:18:3:12:4:7:9

Table 1: Some information about the data sets
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If xk or yk is unknown, otherwise …

If the kth feature is nominal, else (3)

If the kth feature is ordinal

In the above distance function, σk is the standard deviation of the values occurring in the kth

feature of the instances in the training set D, and VDM(xk, yk) is the distance function for nominal
feature called Value Difference Metric (Stanfill et al, 1986). Using VDM, the distance between two
value xk and yk occurring in the kth feature is given as:

(4)

where Nxk
is the number of times the kth feature has value xk; Nxk ,ci 

is the number of times the kth

feature has value xk and the output class is ci; C is the set of output classes, and #C is the number
of output classes.

4.3 Experimental Results
[Experiment 1] In this experiment, our goal is to evaluate SBModel, and to compare its
experimental results with C5.0, kNN, and wkNN. A summary of parameter settings is given in 
Table 2. Under these settings, the comparison of C5.0, SBModel, kNN, and wkNN in classification
accuracy using 10-fold cross validation is given in Table 3. The number of representatives in the
final model of SBModel on each data set is given in Table 4, and the reduction rate of SBModel on
each data set is given in Table 5.

Note that in Table 3, Table 4, and Table 5, N = i means each representative in the final model of
SBModel covers at least i instances of that training set. The parameter N can be removed from
SBModel by a pruning process (more details will be presented in experiment 4 below). The
experimental results of different N listed here are to demonstrate the relationship between the
classification accuracy and reduction rate of SBModel on each data set. The reduction rate used in
Table 5 is defined as follows:

Reduction Rate = (5)

where NumOfIs is the number of instances in the training set and NumOfRs is the number of
representatives in the final model.

Parameter Explanation Setting 

i Local i-consistent neighbourhood 0 
ε Error tolerance rate 0
N The allowed minimal number of instances covered by a 

representative in the final model 2 ~ 5
k The value of k for kNN 1, 3, 5
k The value of k for wkNN 5 

Table 2: A summary of parameter settings
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From the experimental results, it is clear that the average classification accuracy of SBModel on
fifteen training sets is better than C5.0 in 10-fold cross validation, and is comparable to kNN and
wkNN. But SBModel significantly improves the efficiency of kNN by keeping only 11.37 percent

SBModel kNN/wkNN
Data set N=2 N=3 N=4 N=5
Australian 91 66 54 52 690
Colic 80 58 46 41 368
Diabetes 150 100 80 64 768
Glass 44 25 21 13 214
HCleveland 48 37 26 22 303
Heart 41 31 27 23 270
Hepatitis 22 18 15 13 155
Ionosphere 65 52 40 36 351
Iris 7 6 6 6 150
LiverBupa 91 57 39 25 345
Sonar 38 29 26 19 208
Vehicle 166 103 68 55 846
Vote 20 15 14 13 232
Wine 17 17 14 13 178
Zoo 8 7 7 6 90

Table 4: The number of representatives in the final model of SBModel

SBModel kNN w k N N
Data set C5.0 N=2 N=3 N=4 N=5 k=1 k=3 k=5 k=5

Australian 85.5 84.20 84.64 84.78 84.63 79.42 82.75 85.22 82.46
Colic 80.9 81.67 82.50 83.06 82.50 78.89 83.89 83.06 81.94
Diabetes 76.6 75.00 74.08 74.21 74.74 70.92 73.03 74.21 72.37
Glass 66.3 65.24 65.24 61.43 55.71 68.10 66.67 67.62 67.62
HCleveland 74.9 82.67 80.33 80.33 78.00 78.33 82.33 81.00 81.33
Heart 75.6 80.37 80.74 80.37 77.78 76.30 80.37 80.37 77.41
Hepatitis 80.7 83.33 85.33 87.33 87.33 80.67 80.67 83.33 83.33
Ionosphere 84.5 94.29 93.71 92.57 91.43 87.14 85.14 84.00 87.14
Iris 92.0 96.00 96.00 96.00 96.00 95.33 94.67 96.67 95.33
LiverBupa 65.8 63.53 64.41 63.82 61.76 60.00 66.47 66.47 66.47
Sonar 69.4 84.00 82.50 80.00 79.50 88.00 83.50 85.00 86.50
Vehicle 67.9 65.83 65.36 63.69 62.26 68.57 71.79 69.29 71.43
Vote 96.1 88.70 88.70 88.70 88.70 91.30 92.17 92.17 90.87
Wine 92.1 95.29 94.71 94.12 94.12 95.88 94.71 94.71 95.29
Zoo 91.1 92.22 92.22 88.89 88.89 96.67 95.56 95.56 95.56

Average 79.96 82.16 82.03 81.29 80.22 81.03 82.25 82.58 82.34

Table 3: A comparison of C5.0, kNN, SBModel, and wkNN
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instances of the original data sets on average for classification without much degradation in
classification accuracy (82.03%, N=3) in comparison with kNN (82.58%, k=5 – the highest average
classification accuracy among 1-NN, 3-NN, 5-NN ) and wkNN (82.34%, k=5).

The relationship between N and the average classification accuracy of SBModel on fifteen data
sets is shown in Figure 6. The relationship between N and the average reduction rate of SBModel
on fifteen data sets is shown in Figure 7. In both Figure 6 and Figure 7 N ranges from 1 to 20. 

With increasing N, the average reduction rate of SBModel increases, but the average classi-
fication accuracy of SBModel decreases. A tradeoff should be made between efficiency and
effectiveness.

SBModel kNN/wkNN
Data set N=2 N=3 N=4 N=5
Australian 86.81 90.43 92.17 92.46 0
Colic 78.26 84.24 87.50 88.86 0
Diabetes 80.47 86.98 89.58 91.67 0
Glass 79.44 88.32 90.19 93.93 0
HCleveland 84.16 87.79 91.42 92.74 0
Heart 84.81 88.52 90.00 91.48 0
Hepatitis 85.81 88.39 90.32 91.61 0
Ionosphere 81.48 85.19 88.60 89.74 0
Iris 95.33 96.00 96.00 96.00 0
LiverBupa 73.62 83.48 88.70 92.75 0
Sonar 81.73 86.06 87.50 90.87 0
Vehicle 80.38 87.83 91.96 93.50 0
Vote 91.38 93.53 93.97 94.40 0
Wine 90.45 90.45 92.13 92.70 0
Zoo 91.11 92.22 92.22 93.33 0

Average 84.35 88.63 90.81 92.40 0

Table 5: The reduction rate of SBModel on each data set

Figure 6: SBModel: relationship between N and the average classification accuracy
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Parameter Explanation Setting 

i Local i-consistent neighbourhood 0 
ε Error tolerance rate 0 ~ 4
N The allowed minimal number of instances covered by a 

representative in the final model 2 ~ 5
k The value of k for kNN and wkNN 5

Table 6: A summary of parameter settings

[Experiment 2] In an attempt to improve the classification accuracy of SBModel, the second
pruning method is used in this experiment. We tune the error tolerance rate ε in a small range (0~4)
(the SBModel with ε is denoted as ε-SBModel) for each training set, and choose the ε for obtaining
relatively high classification accuracy in the experiment. A summary of parameter settings for this
experiment is given in Table 6, and the experimental results are presented in Table 7, Table 8, and
Table 9 respectively.

From the experimental results presented in Table 7, ε-SBModel obtains better performance than
C5.0, kNN, and wkNN. Even when N=5, ε-SBModel still obtains 82.93% average classification
accuracy which is higher than the 79.96% of C5.0, 82.58% of kNN, and 82.34% of wkNN. In this
situation, ε-SBModel keeps only 7.67 percent instances of the fifteen training sets on average for
classification, thus significantly improving the efficiency whilst preserving the classification
accuracy of kNN.

In this experiment, we also assign different values to ε and N to find the best classification
accuracy on each data set for ε-SBModel, and to see the influence of ε and N on the classification
accuracy of ε-SBModel. When ε varies from 0 to 15 and N varies from 2 to 15, the best classification
accuracy of ε-SBModel on each data set is obtained and presented in Table 10. It shows us that the
best classification accuracy of ε-SBModel on each data set can be obtained by tuning the values of ε
and N in a small range. The best classification accuracy of ε-SBModel outperforms C5.0, kNN, and
wkNN. Moreover, ε-SBModel obtains 89.78% reduction rate on average. 

In Table 10, the abbreviation BCA means “Best Classification Accuracy”, and RR means
“Reduction Rate”. With N=6, the influence of different ε (1~15) on the classification accuracy of 
ε-SBModel is shown in Figure 8 and Figure 9 respectively for Australian and Diabetes data sets.

Figure 7: SBModel: relationship between N and the average reduction rate
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SBModel kNN w k N N
Data set C5.0 εε N=2 N=3 N=4 N=5 k=5 k=5
Australian 85.5 2 84.93 84.93 85.22 85.51 85.22 82.46
Colic 80.9 1 83.06 83.06 82.78 83.61 83.06 81.94
Diabetes 76.6 1 74.34 74.47 75.13 75.53 74.21 72.37
Glass 66.3 3 69.52 69.52 69.52 69.05 67.62 67.62
HCleveland 74.9 4 81.67 81.67 81.67 81.67 81.00 81.33
Heart 75.6 1 80.74 81.11 81.85 81.11 80.37 77.41
Hepatitis 80.7 1 88.00 89.33 88.67 88.67 83.33 83.33
Ionosphere 84.5 1 93.71 93.71 92.86 92.57 84.00 87.14
Iris 92.0 0 96.00 96.00 96.00 96.00 96.67 95.33
LiverBupa 65.8 2 68.53 68.53 68.24 67.94 66.47 66.47
Sonar 69.4 2 82.50 82.50 82.50 81.50 85.00 86.50
Vehicle 67.9 2 66.43 66.43 66.55 66.07 69.29 71.43
Vote 96.1 4 91.74 91.74 91.74 91.74 92.17 90.87
Wine 92.1 0 95.29 94.71 94.12 94.12 94.71 95.29
Zoo 91.1 0 92.22 92.22 88.89 88.89 95.56 95.56

Average 79.96 83.25 83.33 83.05 82.93 82.58 82.34

Table 7: A comparison of C5.0, ε-SBModel, kNN, and wkNN in classification accuracy

εε-SBModel
Data set N=2 N=3 N=4 N=5
Australian 66 66 54 52
Colic 80 58 46 41
Diabetes 150 100 80 64
Glass 21 21 21 13
HCleveland 24 24 24 24
Heart 41 31 27 23
Hepatitis 22 18 15 13
Ionosphere 65 52 40 36
Iris 7 6 6 6
LiverBupa 57 57 39 25
Sonar 28 28 23 20
Vehicle 103 103 68 55
Vote 13 13 13 13
Wine 17 17 14 13
Zoo 8 7 7 6

Table 8: The number of representatives in the final model of ε-SBModel
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εε-SB Model kNN wkNN
Data set C5.0 εε N BCA RR k=5 k=5
Australian 85.5 2 6 86.09 93.62 85.22 82.46
Colic 80.9 1 5 83.61 88.86 83.06 81.94
Diabetes 76.6 1 6 75.78 93.49 74.21 72.37
Glass 66.3 3 4 69.52 90.19 67.62 67.62
HCleveland 74.9 0 2 82.67 84.16 81.00 81.33
Heart 75.6 1 4 81.85 90.00 80.37 77.41
Hepatitis 80.7 1 3 89.33 88.39 83.33 83.33
Ionosphere 84.5 0 2 94.29 81.48 84.00 87.14
Iris 92.0 0 3 96.00 96.00 96.67 95.33
LiverBupa 65.8 2 3 68.53 83.48 66.47 66.47
Sonar 69.4 0 4 84.00 87.50 85.00 86.50
Vehicle 67.9 2 4 66.55 91.96 69.29 71.43
Vote 96.1 4 6 91.74 94.83 92.17 90.87
Wine 92.1 0 2 95.29 90.45 94.71 95.29
Zoo 91.1 0 3 92.22 92.22 95.56 95.56

Average 79.96 83.83 89.78 82.58 82.34

Table 10: The best classification accuracy and reduction rate of ε-SBModel on each data set

εε-SBModel
Data set N=2 N=3 N=4 N=5
Australian 90.43 90.43 92.17 92.46
Colic 78.26 84.24 87.50 88.86
Diabetes 80.47 86.98 89.58 91.67
Glass 90.19 90.19 90.19 93.93
HCleveland 92.08 92.08 92.08 92.08
Heart 84.81 88.52 90.00 91.48
Hepatitis 85.81 88.39 90.32 91.61
Ionosphere 81.48 85.19 88.60 89.74
Iris 95.33 96.00 96.00 96.00
LiverBupa 83.48 83.48 88.70 92.75
Sonar 86.54 86.54 88.94 90.38
Vehicle 87.83 87.83 91.96 93.50
Vote 94.40 94.40 94.40 94.40
Wine 90.45 90.45 92.13 92.70
Zoo 91.11 92.22 92.22 93.33

Average 87.51 89.13 90.99 92.33

Table 9: The reduction rate of ε-SBModel on each data set
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[Experiment 3] In this experiment, our goal is to evaluate SBModel-i. So we assign 1 and 3 to
parameter i for local i-consistent neighbourhood in turn and test the classification accuracy and
reduction rate of SBModel-i. When the value of N is set to 2 and 3 in turn, the comparisons of
different SBModel-i with SBModel in classification accuracy and reduction rate using ten-fold
cross validation are presented in Table 11, Table 12 respectively. 

From the experimental results presented in Table 11 and Table 12, it is clear that using local
i-consistent neighbourhood results in no significant changes in both classification accuracy and
reduction rate between SBModel-i and SBModel. This is why many proposed editing and
condensing methods in the literature that tried to keep the consistency rule as a basic principle in
their editing or condensing processes did not improve their classification accuracy. The detailed
experimental results will be reported in experiment 5.

[Experiment 4] In this experiment, our goal is to evaluate p-SBModel. This is a non-parametric
pruning method, which conducts pruning by removing both the representatives from the model M
that only cover 1 instance (this means no induction is being done for this representative) and the
instances covered by these representatives from the training set, then reconstructing the model from
the revised training set. The experimental results are given in Table 13. 

From the experimental results presented in Table 13, it is clear that with the same classification
accuracy, p-SBModel has a slightly higher reduction rate than SBModel on average. The main merit
of p-SBModel is that it does not need any parameters to be set in the modelling and classification
stages. However, its classification accuracy is comparable to kNN and wkNN. It keeps only 10.13
percent instances of the original training set on average for classification.

Figure 8: The classification accuracy of ε-SBModel testing on Australian data set with different ε

Figure 9: The classification accuracy of ε-SBModel testing on Diabetes data set with different ε
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[Experiment 5] In this experiment, we compare SBModel and its variants with other algorithms in
the literature in both classification accuracy and storage reduction. The algorithms to be compared
in the experiment include CNN, SNN, IB3, DEL, ENN, RENN, Allk-NN, ELGrow, Explore and
DROP3, each of which has been described in Section 2. The experimental results are presented in
Table 14, Table 15, and Table 16 respectively.

Data set SBModel RR SBModel-1 RR SBModel-3 RR

Australian 84.20 86.81 83.91 88.41 84.93 89.13
Colic 81.67 78.26 82.78 79.62 82.78 81.79
Diabetes 75.00 80.47 74.74 82.29 74.34 85.03
Glass 65.24 79.44 64.76 81.31 65.71 85.51
HCleveland 82.67 84.16 79.00 84.16 77.67 85.81
Heart 80.37 84.81 78.52 84.81 79.63 86.67
Hepatitis 83.33 85.81 86.00 86.45 87.33 87.74
Ionosphere 94.29 81.48 93.71 84.33 92.86 84.33
Iris 96.00 95.33 96.00 96.00 96.00 96.00
LiverBupa 63.53 73.62 63.24 78.26 63.82 80.00
Sonar 84.00 81.73 86.00 81.73 83.00 82.69
Vehicle 65.83 80.38 64.05 83.92 64.88 85.82
Vote 88.70 91.38 89.57 91.81 89.13 92.67
Wine 95.29 90.45 94.71 89.89 94.71 89.89
Zoo 92.22 91.11 93.33 92.22 93.33 93.33

Average 82.16 84.35 82.02 85.68 82.01 87.09

Table 11: A comparison of SBModel-i with SBModel in both classification accuracy and reduction rate when N=2

Data set SBModel RR SBModel-1 RR SBModel-3 RR

Australian 84.64 90.43 84.49 90.87 84.49 91.16
Colic 82.50 84.24 82.78 85.05 83.33 83.42
Diabetes 74.08 86.98 74.34 88.67 75.53 88.02
Glass 65.24 88.32 59.05 88.32 60.48 88.32
HCleveland 80.33 87.79 79.00 89.77 77.00 88.45
Heart 80.74 88.52 78.89 89.26 80.00 89.26
Hepatitis 85.33 88.39 87.33 88.39 86.67 88.39
Ionosphere 93.71 85.19 92.86 86.89 92.86 86.61
Iris 96.00 96.00 96.00 96.00 96.00 96.00
LiverBupa 64.41 83.48 63.24 86.67 63.82 85.80
Sonar 82.50 86.06 83.00 85.10 82.00 84.13
Vehicle 65.36 87.83 63.33 89.72 64.17 89.60
Vote 88.70 93.53 89.57 93.53 89.13 93.53
Wine 94.71 90.45 94.12 90.45 94.12 89.89
Zoo 92.22 92.22 92.22 93.33 93.33 93.33

Average 82.03 88.63 81.35 89.47 81.53 89.06

Table 12: A comparison of SBModel-i with SBModel in both classification accuracy and reduction rate when N=3
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Data Set kNN wkNN RR SBModel RR p-SBModel RR
(k=5) (k=5) (N=3)

Australian 85.22 82.46 0 84.64 90.43 86.23 95.22
Colic 83.06 81.94 0 82.50 84.24 82.78 88.59
Diabetes 74.21 72.37 0 74.08 86.98 73.16 87.11
Glass 67.62 67.62 0 65.24 88.32 65.24 84.58
HCleveland 81.00 81.33 0 80.33 87.79 80.67 89.11
Heart 80.37 77.41 0 80.74 88.52 81.85 91.11
Hepatitis 83.33 83.33 0 85.33 88.39 84.67 96.77
Ionosphere 84.00 87.14 0 93.71 85.19 92.00 87.18
Iris 96.67 95.33 0 96.00 96.00 95.33 95.33
LiverBupa 66.47 66.47 0 64.41 83.48 62.94 82.03
Sonar 85.00 86.50 0 82.50 86.06 82.50 86.54
Vehicle 69.29 71.43 0 65.36 87.83 67.26 83.69
Vote 92.17 90.87 0 88.70 93.53 90.00 96.98
Wine 94.71 95.29 0 94.71 90.45 94.71 90.45
Zoo 95.56 95.56 0 92.22 92.22 91.11 93.33

Average 82.58 82.34 0 82.03 88.63 82.03 89.87

Table 13: A comparison of kNN, wkNN, SBModel, and p-SBModel in both clasification accuracy and reduction rate

Data set CNN RR SNN RR IB3 RR DEL RR DROP3 RR

Australian 77.68 75.78 81.31 75.85 85.22 95.22 84.78 97.44 83.91 94.04
Colic 59.90 64.34 64.47 51.35 66.75 91.51 67.73 78.18 70.13 89.70
Diabetes 65.76 63.11 67.97 57.05 69.78 89.03 71.61 87.36 75.01 83.10
Glass 68.14 61.47 64.39 57.37 62.14 66.20 69.59 61.58 65.02 76.12
HCleveland 73.95 69.16 76.25 66.12 81.16 88.89 79.49 86.36 80.84 87.24
Heart 70.00 73.83 77.04 66.22 80.00 86.42 78.89 95.27 83.33 86.38
Hepatitis 75.50 74.70 81.92 69.04 73.08 94.91 80.00 92.41 81.87 92.20
Ionosphere 82.93 78.38 81.74 80.79 85.75 85.41 86.32 87.12 87.75 92.94
Iris 90.00 87.26 83.34 85.93 94.67 80.22 93.33 90.44 95.33 85.19
LiverBupa 56.80 59.13 57.70 47.41 58.24 89.34 61.38 87.36 78.00 75.01
Sonar 74.12 67.15 79.81 71.74 69.38 87.98 83.59 70.14 78.00 73.13
Vehicle 67.50 62.96 67.27 56.79 67.62 71.64 68.10 67.49 65.85 77.00
Vote 93.59 90.88 95.40 89.79 95.64 94.56 94.27 97.98 95.87 94.89
Wine 92.65 85.70 96.05 85.77 91.50 83.40 94.38 90.95 94.93 83.89
Zoo 91.11 87.53 76.67 89.38 92.22 70.62 90.00 81.73 90.00 80.00

Average 75.98 73.43 76.76 70.04 78.21 85.02 80.23 84.79 81.72 84.72

Table 14: A comparison of different algorithms in both classification accuracy and storage percentage (I)

From the experimental results, it is clear that the average classification accuracies and reduction
rates of our proposed SBModel method and its variants on fifteen data sets are better than other data
reduction methods in 10-fold cross validation with the exceptions of ELGrow and Explore in
reduction rate. Though ELGrow obtains the highest reduction rate among all the algorithms, its
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rather low classification accuracy conteracts this advantage. Explore seems to be a competitive
algorithm with a higher reduction rate and a slightly lower classification accuracy than SBModel
and its variants. Otherwise, DROP3 is closest to our algorithms in both classification accuracy and
reduction rate. 

SBModel RR ε-SBModel RR p-SBModel RR SBModel-i RR
Data set (N=3) (εε=0~4, N=5) (p=1) (i=3, N=2)
Australian 84.64 90.43 85.51 92.46 86.23 95.22 84.93 89.13
Colic 82.50 84.24 83.61 88.86 82.78 88.59 82.78 81.79
Diabetes 74.08 86.98 75.53 91.67 73.16 87.11 74.34 85.03
Glass 65.24 88.32 69.05 93.93 65.24 84.58 65.71 85.51
HCleveland 80.33 87.79 81.67 92.08 80.67 89.11 77.67 85.81
Heart 80.74 88.52 81.11 91.48 81.85 91.11 79.63 86.67
Hepatitis 85.33 88.39 88.67 91.61 84.67 96.77 87.33 87.74
Ionosphere 93.71 85.19 92.57 89.74 92.00 87.18 92.86 84.33
Iris 96.00 96.00 96.00 96.00 95.33 95.33 96.00 96.00
LiverBupa 64.41 83.48 67.94 92.75 62.65 82.03 63.82 80.00
Sonar 82.50 86.06 81.50 90.38 82.50 86.54 83.00 82.69
Vehicle 65.36 87.83 66.07 93.50 67.14 83.68 64.88 85.82
Vote 88.70 93.53 91.74 94.40 90.00 96.98 89.13 92.67
Wine 94.71 90.45 94.12 92.70 94.71 90.45 94.71 89.89
Zoo 92.22 92.22 88.89 93.33 91.11 93.33 93.33 93.33

Average 82.03 88.63 82.93 92.33 82.03 89.87 82.01 87.09

Table 16: A comparison of different algorithms in both classification accuracy and storage percentage (III)

Data set ENN RR RENN RR Allk-NN RR ELGrow RR Explore RR

Australian 84.49 13.51 84.20 15.20 86.09 21.93 83.62 99.68 85.80 99.68
Colic 45.89 41.79 32.91 72.13 45.89 47.84 67.09 99.63 67.09 99.63
Diabetes 75.39 23.63 75.91 25.48 74.88 35.39 67.84 99.71 75.27 99.71
Glass 65.91 29.18 64.00 30.94 67.75 34.11 50.24 97.72 63.98 96.47
HCleveland 82.49 16.54 82.16 17.49 81.51 27.28 81.52 99.27 82.15 99.27
Heart 81.11 16.87 81.11 18.02 81.85 27.98 74.44 99.18 81.85 99.18
Hepatitis 81.25 16.27 80.58 17.20 81.33 24.80 76.67 99.00 78.67 98.71
Ionosphere 84.04 15.76 84.04 17.73 84.05 17.81 73.77 99.37 80.89 99.37
Iris 95.33 5.26 95.33 5.33 95.33 6.22 88.67 97.70 92.67 97.70
LiverBupa 61.12 31.85 58.77 36.87 60.24 47.66 56.74 99.45 57.65 99.36
Sonar 81.79 15.65 78.53 18.21 80.36 19.71 70.24 98.93 70.29 98.93
Vehicle 69.52 26.19 69.05 30.25 70.21 35.26 58.15 97.75 60.76 97.53
Vote 95.41 4.16 95.41 4.19 95.41 5.65 88.99 99.49 94.25 99.49
Wine 94.93 4.43 94.93 4.43 94.93 5.24 81.47 98.07 95.46 97.88
Zoo 91.11 7.04 91.11 7.41 93.33 5.93 94.44 92.10 95.56 91.60

Average 79.32 17.88 77.87 21.39 79.54 24.19 74.26 98.47 78.82 98.30

Table 15: A comparison of different algorithms in both classification accuracy and storage percentage (II)
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5. CONCLUSIONS
In this paper we have presented a novel solution for dealing with the shortcomings of kNN. To
overcome the problems of low efficiency and dependency on k, we select a few representatives from
the training set with some extra information to represent the whole training set. In the selection of
each representative we use an optimal and different k, chosen automatically for each data set itself,
to eliminate the dependency on k, without the user’s intervention. Experimental results carried out
on fifteen public data sets show that SBModel and its variants: ε-SBModel, p-SBModel and
SBModel-i are competitive for classification. Their average classification accuracies on fifteen
public data sets are better than C5.0 and are comparable with kNN, and wkNN. But SBModel and
its variants significantly reduce the number of instances in the final model for classification, with
average reduction rates ranging from 87.09% to 92.33%. Moreover, compared with other reduction
techniques, ε-SBModel obtains the best performance. It keeps only 7.67 percent instances of the
original training set on average for classification whilst preserving the classification accuracy of
kNN and wkNN. It is a good alternative to kNN in many application areas such as dynamic web
mining from a large document repository. 
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