
Code Generation for Embedded Second-Order Cone Programming

Eric Chu∗, Neal Parikh†, Alexander Domahidi‡, and Stephen Boyd∗

Abstract— This paper describes a framework for generating
easily verifiable code to solve convex optimization problems in
embedded applications by transforming them into equivalent
second-order cone programs. In embedded applications, it is
critical to be able to verify code correctness, but it is also
desirable to be able to rapidly prototype and deploy high-
performance solvers for different problems. To balance these
two requirements, we propose a code generation system that
takes high-level descriptions of convex optimization problems
and generates code that maps the parameters in the original
problem to data in an equivalent second-order cone program,
which is then solved by a single, external solver that can be
verified once and for all. A novel aspect is that we restrict
the parameters in the original problem to only appear in
affine functions, which lets us map the parameters to problem
data without performing any floating point operations. As a
result, the generated code is lightweight, fast, and trivial to
verify. The approach thus marries the benefits of high-level
parser/solvers with custom, high-performance, high-reliability
solvers for embedded applications.

I. INTRODUCTION

We describe a parser/generator that generates simple,

lightweight, and easily verifiable code for solving parameter-

ized families of convex optimization problems on embedded

systems. It takes as input a high-level problem description,

parses it into an internal representation, verifies the convexity

of the problem, and then generates C code that maps the

parameters in the original description to the problem data

in an equivalent second-order cone program. This resulting

code can then be called to solve a particular problem in-

stance, in which the parameters of the original description are

fixed to given values. In the generated code, the parameters

are mapped to appropriate problem data in a cone program,

which is solved with an external solver; the solution of the

cone problem is then mapped back to the original variables.

We describe each step in detail in what follows.

Many of these ideas are not new: We build on previous

work on automatic convexity detection, automatic canoni-

calization into conic form, and code generation for convex

optimization. There are two novel aspects to our system.

First, we target second-order cone programs as a canoni-

cal form, while previous parser/generators only supported

quadratic programs or quadratically-constrained quadratic

programs; thus, the scope of problems addressable is much

larger here. Second, and most important, we place a greater

emphasis on being able to easily verify the correctness of the

∗ E. Chu and S. Boyd are with the Electrical Engineering Department at
Stanford University. Email: {echu508, boyd}@stanford.edu

† N. Parikh is with the Computer Science Department at Stanford
University. Email: npparikh@cs.stanford.edu

‡ A. Domahidi is with the Automatic Control Laboratory at ETH Zurich.
Email: domahidi@control.ee.ethz.ch

generated code. In particular, we restrict the use of problem

parameters in the problem specification by allowing them to

only enter through specific functions. This restriction enables

the code generator to map parameters in the original problem

to the canonical form without performing any floating point

operations. The generated code is thus fast, lightweight,

trivial to verify, and compatible with embedded hardware

providing only fixed point operations.

To solve the resulting second-order cone programs, we

call the embedded conic solver (ECOS) [1]. (ECOS itself

requires floating-point operations.) However, it would be

straightforward to use a different solver or to extend our code

generation system to also generate the solver code itself. We

demonstrate the method on a portfolio optimization problem.

A. Related work

The idea of canonicalizing high-level problem descriptions

into cone programs originated with the parser/solver SDP-

SOL [2]. Other parser/solvers like YALMIP [3] and CVX

[4], [5] embed these description languages in Matlab.

While parser/solvers are ideal for prototyping algorithms

that rely on convex optimization, deploying these algorithms

on embedded systems requires tedious manual transforma-

tions and possibly substantial time to write a fast, reliable

custom C solver. The parser/generator CVXGEN [6] aims to

overcome this limitation by pre-generating the solver for a

family of convex optimization problems as custom C source.

It is not suitable for rapid prototyping due to the time

consuming code generation step, but the resulting solvers

are extremely reliable and can solve problem instances on

the order of microseconds. However, CVXGEN and similar

frameworks, such as FORCES and ACADO, are restricted to

solving (a sequence of) quadratic programs or quadratically-

constrained quadratic programs [6], [7], [8], [9], [10], [11].

A key ingredient of all these systems is to be able to

automatically verify the convexity of a given high-level

problem description. Automatic convexity detection appears

in systems as diverse as the AMPL modeling language

and the solver in Microsoft Excel [12], [13], [14]. Several

other approaches exist [15], [16], but in this paper, we use

disciplined convex programming [4], which we review in

§IV. The main advantages are that it consists of a very

simple set of rules that come directly from the underlying

mathematics; it is easy to implement; and it is easy to

canonicalize problems that conform to its rules.

B. Outline

First, in §II, we describe the class of problems we want

to solve. In §III, we give a brief overview of different

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 1547

approaches to solving these classes of problems. In §IV, we

describe the framework of disciplined convex programming

and show how it can be used to verify the convexity of

the problems discussed in §II. In §V, we describe the

canonicalization process, i.e., how we automatically generate

an equivalent cone program. We present an example in §VI.

II. PROBLEM FAMILIES

A parametric family P of optimization problems is

minimize f0(x;α)
subject to fi(x;α) ≤ gi(x;α), i = 1, . . . ,m,

ui(x;α) = vi(x;α), i = 1, . . . , p,
(1)

where x ∈ Rn is the optimization variable and α ∈ A are

the parameters. The set A is called the parameter space,

and we obtain a particular problem instance P(α) when we

choose fixed parameters α ∈ A. We use the term ‘problem’

informally, referring either to families or instances; the usage

should be clear in context. We assume here that the functions

fi, gi : Rn×A → R and ui, vi : Rn×A → R are specified

with concrete formulas (described in detail below).

A family P is convex when, for each α ∈ A, the functions

fi (including f0) are convex (in x), the functions gi are

concave, and the functions ui and vi are affine. Our focus

is on convex families that are SOCP-representable, i.e., can

be transformed into equivalent second-order cone programs

(SOCPs). We focus on these problems because a very large

number of important problems are SOCP-representable; see,

e.g., [17], [18], [19], [20], [21] for background. SOCP-

representable problems include linear programs, quadratic

programs, and quadratically constrained quadratic programs.

A convex family of second-order cone programs is

minimize cTx

subject to Ax+ s = b, s ∈ K,
(2)

with variable x ∈ Rn and s ∈ Rm. Here K is the cone

K = Qm1 × · · · × Qmq × {0}r,

where

Qp = {(t, x) ∈ R × Rp−1 | ‖x‖2 ≤ t}

is the second-order cone of dimension p, and we define Q1 to

be R+, the cone of nonnegative reals. The parameters in the

SOCP are A, b, c, and the cone dimensions (m1, . . . ,mq).
(There are several other standard forms for SOCPs, which

are easily transformed into our form, and vice versa.)

We will solve the problem (1) by transforming it into an

equivalent SOCP (2), solving the resulting SOCP, and finally,

extracting the solution of the original problem from the

solution of the SOCP. We refer to the process of transforming

a convex problem of the form (1) into an equivalent SOCP of

the form (2) as canonicalization. By ‘equivalent’, we mean

that we can easily construct a solution of the original problem

from a solution of the SOCP. With the canonicalization

method described in §V, recovering a solution of the original

problem from a solution of the SOCP only involves ignoring

the additional variables introduced in the canonicalization.

III. SOLVERS

There are two main approaches for solving general

convex problems: parser/solvers and parser/generators. A

parser/solver parses a problem instance P(α), canonicalizes

it to obtain an equivalent SOCP, solves the SOCP (with a

generic, external SOCP solver), and then recovers a solution

to the original problem from the solution to the SOCP. It is

substantially easier to use systems of this type than to use

the underlying cone solvers directly, which requires manual

transformations of the problem of interest. CVX [22] is an

example of a parser/solver.

A parser/generator takes a problem family P , analyzes

it in advance, and generates a custom SOCP solver. When

a particular instance P(α) is to be solved, it only needs to

map the parameters in the problem instance to the SOCP

problem data, run the (custom) solver, and return a solution

to the original problem. Since the analysis of the structure

of the problem family can take a substantial amount of time,

parser/generators avoid some work when actually solving a

particular instance P(α) and (for small problems) can solve

individual instances orders of magnitude faster than other ap-

proaches. CVXGEN [6] is an example of a parser/generator.

Our approach takes a problem family P , canonicalizes

it, and generates lightweight code for mapping parameters

of problem instances P(α) into SOCP problem data. In

particular, our mapping code, called prob2socp, performs

no floating point operations; it merely copies data into

the appropriate locations in the SOCP problem data. The

converse operation, called socp2prob, takes a solution of

the SOCP and returns a solution of the original problem. It,

too, does nothing more than copy data from one structure

to another. To solve instances of the original problem, we

simply call prob2socp, the SOCP solver (ECOS, in our

case), and socp2prob in order. If many problems from the

same family are to be solved, these three functions are called

repeatedly. Setup routines and tasks such as determining the

elimination order in ECOS or allocating memory can be done

beforehand, and only once.

IV. DISCIPLINED CONVEX PROGRAMMING

In this section, we describe how convex problem families

and problem instances are represented, and how we can

verify convexity of the problem family or instance.

A. Atoms

The functions fi, gi, ui, and vi in the problem instance or

family are described using a set of given atoms, which are

built-in functions such as sum, maximum, square, or norm.

A full list of the atoms is given in Table I.

Our system supports vector, scalar, and parametric atoms.

A vector atom takes vector arguments and returns a scalar,

while a scalar atom takes scalar arguments and returns a

scalar. When scalar atoms are evaluated with vector argu-

ments, they are applied elementwise. A parametric atom has

(vector or matrix) parameters in addition to arguments.

Each atom has three more key properties: the sign of its

output (positive, negative, or unknown), its monotonicity in

1548

each argument (increasing, decreasing, or neither), and its

curvature (convex, concave, or affine). For example, the atom

φsqrt (the square root) is positive, increasing, and concave.

(We use positive to denote nonnegative, increasing to mean

nondecreasing, and so on.)

More generally, atoms can have sign-dependent sign and

sign-dependent monotonicity. For example, the atom φplus

(which adds its two scalar arguments) is positive when both

arguments are positive, negative when both arguments are

negative, and neither otherwise. As another example, φsquare

(the square) is increasing when its argument is positive

and decreasing when its argument is negative. (Though not

currently supported, this idea could be extended to support

sign-dependent curvature; e.g., a ‘cube’ atom φcube would

be convex (concave) for positive (negative) arguments.)

The sign and monotonicity of parametric atoms depends

on the sign of the associated parameters, which in turn

depends on A. For example, φsmult (scalar multiplication) is

positive when its parameter α and argument x are positive; it

is increasing when its parameter α is positive. (All parametric

atoms are affine, so the curvature does not depend on the sign

of the parameter or argument.)

A vector is considered to be positive only if every entry

is positive. For example, the atom

φquad over lin(x, y) =
xTx

y
,

where x is a vector and y > 0 is a scalar, is positive,

nonmonotonic in x, decreasing in y, and convex. When x

is positive (negative), it is increasing (decreasing) in x.

B. Expressions

An expression is recursively defined as either a (vector)

variable or an atom evaluated at a subexpression. They

are naturally represented as trees in which the leaves are

variables, the internal nodes are atoms, and each atom is

considered to be evaluated using its children (which may

be variables or more complex subexpressions) as arguments.

See Figure 1 for an example. We distinguish between atoms

and expressions: For example, φsquare is an atom, while

φsquare(x) is an expression (assuming x is a variable).

We can determine the sign of an expression in the fol-

lowing recursive manner. Variables have unknown sign. The

sign of an expression is then determined by working our way

up the expression tree and using the sign rules for the atoms

at each internal node. For example, φsquare(x) + φsquare(y)
is positive because the sign of φsquare is positive even when

evaluated with an expression of unknown sign, and the sign

of φplus (which we write as + in infix notation above) is

positive when both its arguments are positive.

We can build on this to determine the curvature of an

expression in the following recursive fashion. Variables are

affine. We then work up the expression tree applying the

following composition rule: φ(g1(x), . . . , gn(x);α) is con-

vex if the atom φ is convex and if, for each i, we have that

either gi is affine, φ is increasing in the ith argument and

gi is convex, or φ is decreasing in the ith argument and gi

t0 = φsquare(t1)

t1 = φnorm(t2)

t2 = φminus(t3, t4)

t3 = φmmult(x;F)

t4 = φconst(; g)x

Fig. 1: Expression tree representation of ‖Fx− g‖22.

is concave. The rule for verifying concavity is similar. The

expression is affine if φ is affine and g1, . . . , gn are all affine.

C. Convex problems

We can verify the convexity of a problem family by

determining the curvature of all the expressions and atoms

that appear in it. In particular, a problem family is convex

when, for each α ∈ A, the following three conditions hold:

1) the objective function f0 is convex;

2) the functions fi (gi) are convex (concave);

3) the functions ui and vi are affine.

We refer to problems that are convex when verified this way

as DCP-compliant. All DCP-compliant problems are convex,

but the converse is not true; there are convex problems

that cannot be verified as convex using the recursive rules

described above.

V. CANONICALIZATION

Given a DCP-compliant problem family P , the next step

is canonicalization: automatically transforming this problem

into an equivalent second-order cone program. This process

is carried out (at least conceptually) in several stages.

A. Smith form

The first step is to rewrite the problem in Smith form

[23], [24], which involves introducing a new variable for

each subexpression. This is best illustrated with an example.

Consider the least-squares problem

minimize f(x) = ‖Fx− g‖22

with x ∈ Rn and problem data F ∈ Rm×n and g ∈ Rm.

Using the atoms in Table I, we express f as

f(x) = φsquare(φnorm(φminus(φmmult(x;F), φconst(; g)))).

The Smith form of this problem is then the following:

minimize t0
subject to t0 = φsquare(t1)

t1 = φnorm(t2)
t2 = φminus(t3, t4)
t3 = φmmult(x;F)
t4 = φconst(; g),

where the variables are (the original one) x and (new ones)

t0 ∈ R, t1 ∈ R, t2 ∈ Rm t3 ∈ Rm, and t4 ∈ Rm. Each of the

new variables corresponds to a node (atom) in the expression

tree for the original objective ‖Fx − g‖22, and each atom’s

1549

TABLE I: Atom library.

Atom Definition Curvature Implementation

Parametric atoms

φsmult(x; a) ax Affine t = ax

φmmult(x;A) Ax Affine t = Ax

φconst(; a) a Affine t = a

Scalar atoms

φplus(x, y) x+ y Affine t = x+ y

φminus(x, y) x− y Affine t = x− y

φnegate(x) −x Affine t = −x

φpos(x) max(x, 0) Convex t ∈ Q1, t− x ∈ Q1

φneg(x) max(−x, 0) Convex t ∈ Q1, t+ x ∈ Q1

φsquare(x) x2 Convex t ≥ φquad over lin(x, 1)

φinv pos(x) 1/x Convex t ≥ φquad over lin(1, x)

φabs(x) |x| Convex (t, x) ∈ Q2

φgeo mean(x, y)
√
xy Concave ((1/2)(y + x), (1/2)(y − x), t) ∈ Q3, y ∈ Q1

φsqrt(x)
√
x Concave t ≤ φgeo mean(x, 1)

Vector atoms

φsum(x) 1
T x Affine t = 1

T x

φmax(x) max{x1, x2, . . . , xn} Convex t− xi ∈ Q1, i = 1, . . . , n

φquad over lin(x, y) xT x/y Convex ((1/2)(y + t), (1/2)(y − t), x) ∈ Qn+2, y ∈ Q1

φnorm(x) ‖x‖2 Convex (t, x) ∈ Qn+1

φnorm1(x) ‖x‖1 Convex t ≥ φsum(φabs(x))

φnorm inf(x) ‖x‖∞ Convex t ≥ φmax(φabs(x))

φmin(x) min{x1, x2, . . . , xn} Concave xi − t ∈ Q1, i = 1, . . . , n

arguments are now individual variables. Furthermore, each

constraint involves only a single atom.

Figure 1 shows the expression tree representation (and

the new variables introduced) for this problem. Parameters

are private to the φmmult and φconstant atoms and are not

represented in the tree itself.

B. Relaxed Smith form

The Smith form is of course equivalent to the original

problem, but it is not convex (unless all atoms used are

affine), since in a convex problem, all equality constraints

must be affine. The next step is to relax the equality

constraints with nonlinear atoms into inequality constraints

as follows. If an atom φ is convex, the constraint t = φ(x)
is replaced with t ≥ φ(x), and if φ is concave, it is replaced

with t ≤ φ(x). If φ is affine, the constraint remains as is.

We refer to the resulting problem as being in relaxed

Smith form. When the original problem is DCP-compliant,

the relaxation is guaranteed to be tight in the sense that

if (x⋆, t⋆) is optimal for the relaxed Smith form, then x⋆

is optimal for the original problem. Here, x⋆ refers to all

the original variables, and t⋆ refers to all the new variables

introduced in Smith form.

The relaxed Smith form for our least-squares example is

minimize t0
subject to t0 ≥ φsquare(t1)

t1 ≥ φnorm(t2)
t2 = φminus(t3, t4)
t3 = φmmult(x;F)
t4 = φconst(; g).

This is a convex problem, equivalent to the original least-

squares problem. (For this example, it is easy to see that

for any solution of the relaxed Smith form problem, the two

inequality constraints hold as equalities.)

C. Representation of atoms

The next question concerns how atoms are represented.

We use graph implementations [5] to represent nonlinear

functions in our atom library. (Affine atoms do not require

any special representation.) At a high level, each nonlinear

atom is defined as the optimal value of a partially-specified

convex optimization problem. A convex atom is defined via

a minimization problem; a concave atom is defined via a

maximization problem.

For example, the atom φabs is represented as

minimize t

subject to (t, x) ∈ Q2.

The optimal value of this problem for a given value of x is

precisely |x|. Whenever we see the atom φabs in the relaxed

Smith form of a problem, we incorporate this representa-

tion into the surrounding problem. As atoms only appear

individually in the constraints when problems are written in

relaxed Smith form, we need only define how the constraint

t ≥ φ(x)
(

t ≤ φ(x)
)

is rewritten for convex (concave)

atoms. For example, t ≥ φabs(x) would be replaced with

(t, x) ∈ Q2. (Care is taken to avoid name conflicts with

existing variables.) Table I gives a listing of the atoms, their

definitions, and their equivalent conic implementations (i.e.,

the inline expansion of the relaxed Smith form constraint).

When each atom in the relaxed Smith form is replaced by

its graph implementation (each of which is a small SOCP),

1550

we obtain an SOCP, and the canonicalization is complete.

Graph implementations can also depend on other atoms; for

example, the implementation of φsqrt is given by maximizing

a variable t subject to t ≤ φgeo mean(x, 1). In such cases,

graph implementations must be unrolled recursively.

Expanding the two nonlinear atoms φsquare and φnorm that

appear in our least-squares example, we arrive at the SOCP

minimize t0
subject to (1 + t0, 1− t0, 2t1) ∈ Q3

(t1, t2) ∈ Qm+1

t2 = t3 − t4
t3 = Fx

t4 = g,

where we write the affine atoms in their natural form.

The final step is to express this SOCP in the standard

form (2). With variable (x, t0, . . . , t4), and the same order

of equations as above, the SOCP problem data are

c = (0, 1, 0, . . . , 0),

A =

−1
1

−2
−1

−I

I −I I

F −I

I

, b =

1
1
0
0
0
0
g

(with empty entries meaning zero and the horizontal lines

giving the cone boundaries), and cone dimensions

m1 = 3, m2 = m+ 1.

The first three rows of A, b correspond to the φsquare atom;

this pattern is fixed and repeated whenever the φsquare atom

is used. Similarly, for other atoms, their SOCP definition is

effectively copied into the appropriate block of A, b.

Note that, as a consequence of Smith form, we introduced

new variables (and thus new columns in A) for all affine

atoms; this is not strictly necessary since affine expressions

can be handled explicitly. These variables affect solver

performance and can be eliminated via a pre-solver.

D. Mapping parameters to problem data

Examining the canonicalization procedure, we see that the

original problem parameters only appear in affine atoms.

Moreover, the original problem parameters are only copied

into either the coefficient matrix or the righthand side of the

data for the SOCP. Thus, the canonicalization procedure is

very simple: it consists of copying the problem data into

the SOCP data. Both of these data can be represented as

C structs, so the canonicalization consists of nothing

more than copying entries from the struct that holds the

problem data into the struct that holds the SOCP data. If

the parameter data provides a copy interface, then we can

handle more generic data objects. All of the other entries in

the SOCP data derive from atom definitions and are fixed,

i.e., do not depend on the problem data.

Our simple example makes this mapping very clear. The

function prob2socp constructs the SOCP data, which

involves copying F into the matrix A, and g into the vector b;

the other entries in the SOCP data are constant. The function

socp2prob is even simpler: it simply takes the first m

components from the SOCP solution vector.

VI. PORTFOLIO OPTIMIZATION EXAMPLE

We consider a simple long-only portfolio optimization

problem [17, p. 185–186], where we choose relative weights

of assets to maximize risk-adjusted return. The problem is

maximize µTx− γ(xTΣx)
subject to 1

Tx = 1, x ≥ 0,

where the variable x ∈ Rn represents the portfolio, µ ∈ Rn

is the vector of expected returns, γ > 0 is the risk-aversion

parameter, and Σ ∈ Rn×n is the asset return covariance,

given in factor model form,

Σ = FFT +D.

Here F ∈ Rn×m is the factor-loading matrix, and D ∈ Rn×n

is a diagonal matrix (of idiosyncratic risk). The number

of factors in the risk model is m, which we assume is

substantially smaller than n, the number of assets.

Using the structure of Σ, we can express the problem as

maximize µTx− γ‖FTx‖22 − γ‖D1/2x‖22
subject to 1

Tx = 1, x ≥ 0.

In our domain-specific language, this problem is:

variable x(n)

parameter mu(n)

parameter gamma positive

parameter F(n,m)

parameter Dhalf(n,n)

maximize mu’*x

- gamma*square(norm(F’*x))

- gamma*square(norm(Dhalf*x))

subject to

sum(x) == 1

x >= 0

From this specification, our code generator creates

prob2socp and socp2prob. Structure in the data (e.g.,

the fact that Dhalf is diagonal) is automatically exploited.

This code snippet also illustrates some language features:

• Infix notation. The multiplication operator, expressed

with ∗ in infix notation, is the parametric atom

φmult(x;A) = Ax. The subtraction operator, expressed

with − in infix notation, is the scalar atom φminus.

• Vector atoms. The sum function is the vector atom

φsum, which takes a vector and returns a scalar.

• Signed monotonicity. square(norm()) is correctly

recognized as convex since norm is positive and

square is increasing when its argument is positive.

• Constants and scalar-vector promotion. The (scalar)

constant 0 is treated as a scalar parameter; it is then

1551

TABLE II: Summary for portfolio example.

(m,n) CVX ECOS

(10, 300) 173ms 18ms
(20, 500) 215ms 57ms
(30, 1000) 324ms 311ms

promoted to a vector and the inequality is interpreted

elementwise.

• Quadratic forms. Because we require parameters to only

appear in affine functions, we do not have an atom to

define quadratic forms, as in

φquad form(x;P) = xTPx.

To express quadratic forms, the user precomputes the

Cholesky factor or square root of P and writes

φsquare(φnorm(P 1/2x)) = ‖P 1/2x‖22.

This was done for xTDx in our example.

On a 3.4GHz Intel Xeon machine with 16GB of RAM, we

compare our solve times for three small problems to CVX

(using SeDuMi as the underlying solver). The results are

summarized in Table II. Note that SeDuMi is multithreaded.

The ECOS times are approximately 3 times slower than the

times in [1]; this is due to the lack of a pre-solver and

the introduction of new (redundant) variables in the relaxed

Smith form. A pre-solver recovers the performance in [1].

VII. CONCLUSION

In this paper, we have described a framework for gen-

erating easily verifiable code to solve SOCP-representable

problem families P on embedded systems. The key is to

restrict parameters to only appear in affine, parametric atoms.

A high-level description language for the problem is

translated into a lightweight wrapper that

1) copies problem instance P(α)’s parameters α into

SOCP data A, b, and c,

2) calls the ECOS solver, and

3) copies the solution back into the original variables.

Because our generated code only copies memory, it is easy

to verify, and it is compatible with fixed-point operations.

It relies on a fast and robust SOCP solver implementation,

ECOS. By validating ECOS, users may adapt problem fam-

ilies as needed for embedded applications without need-

ing to validate the generated code whenever the problem

changes. Thus, we are able to marry the benefits of high-

level parser/solvers with custom, high-performance, high-

reliability solvers for embedded applications.

ACKNOWLEDGEMENTS

This work was supported by DARPA XDATA (FA8750-

12-2-0306), NASA (NNX07AEIIA), and EMBOCON (ICT-

248940) from the EU in FP7. N. Parikh was also supported

by a NSF Graduate Research Fellowship (DGE-0645962).

REFERENCES

[1] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver
for embedded systems,” in European Control Converence, Zurich,
Switzerland, 2013, to appear.

[2] S.-P. Wu and S. Boyd, “SDPSOL: A parser/solver for SDP
and MAXDET problems with matrix structure,” Available at
www.stanford.edu/∼boyd/old software/SDPSOL.html, Nov 1995.

[3] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in IEEE International Symposium on Computed Aided

Control Systems Design, Sep 2004, pp. 294–289.
[4] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in

Global Optimization: From Theory to Implementation, ser. Nonconvex
Optimization and its Applications, L. Liberti and N. Maculan, Eds.
Springer, 2006, pp. 155–210.

[5] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer, 2008, pp. 95–110.

[6] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embed-
ded convex optimization,” Optimization and Engineering, vol. 13, pp.
1–27, 2012.

[7] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones,
“Efficient interior point methods for multistage problems arising in
receding horizon control,” in IEEE Conference on Decision and

Control, Grand Wailea Maui, HI, USA, Dec. 2012.
[8] A. Domahidi, “FORCES: Fast optimization for real-time control on

embedded systems,” Available at forces.ethz.ch/, Oct. 2012.
[9] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An open

source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[10] B. Houska and H. Ferreau, “ACADO toolkit user’s manual,”
www.acadotoolkit.org, 2009–2011.

[11] D. Ariens, B. Houska, and H. Ferreau, “Acado for Matlab user’s
manual,” www.acadotoolkit.org, 2010–2011.

[12] Frontline Solvers, “Excel solver, optimization software, Monte Carlo
simulation, data mining - Frontline Systems,” www.solver.com.

[13] R. Fourer, C. Maheshwari, A. Neumaier, D. Orban, and H. Schicl,
“Convexity and concavity detection in computation graphs: Tree walks
for convexity assessment,” INFORMS Journal on Computing, vol. 22,
pp. 26–43, 2010.

[14] I. P. Nenov, D. H. Fylstra, and L. V. Kolev, “Convexity determination
in the Microsoft Excel solver using automatic differentiation tech-
niques,” in Fourth International Workshop on Automatic Differentia-

tion, 2004.
[15] D. R. Stoutmeyer, “Automatic categorization of optimization prob-

lems: An application of computer symbolic mathematics,” Operations

Research, vol. 26, pp. 773–738, 1978.
[16] C. Crusius, “Automated analysis of convexity properties of nonlinear

programs,” Ph.D. dissertation, Stanford University, 2003.
[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[18] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-

tion. Analysis, Algorithms, and Engineering Applications. Society for
Industrial and Applied Mathematics, 2001.

[19] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Methods

in Convex Programming. Society for Industrial and Applied Mathe-
matics, 1994.

[20] F. Alizadeh and D. Goldfarb, “Second-order cone programming,”
Mathematical Programming Series B, vol. 95, pp. 3–51, 2003.

[21] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications
of second-order cone programming,” Linear Algebra and Its Applica-

tions, vol. 284, pp. 193–228, 1998.
[22] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for dis-

ciplined convex programming, ver. 2.0, build 870,” Available at
www.stanford.edu/∼boyd/cvx/, Sep. 2012.

[23] E. Smith, “On the optimal design of continuous processes.” Ph.D.
dissertation, Imperial College London (University of London), 1996.

[24] L. S. Liberti, “Reformulation and convex relaxation techniques for
global optimization,” Ph.D. dissertation, Imperial College London
(University of London), 2004.

1552

