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Abstract

Most existing discriminative training methods adopt smooth loss functions that could be optimized directly. In natural language processing
(NLP), however, many applications adopt evaluation metrics taking a form as a step function, such as character error rate (CER). To address
the problem, a newly-proposed discriminative training method is analyzed, which is called minimum sample risk (MSR). Unlike other
discriminative methods, MSR directly takes a step function as its loss function. MSR is firstly analyzed and improved in time/space
complexity. Then an improved version MSR-II is proposed, which makes the computation of interference in the step of feature selection
more stable. In addition, experiments on domain adaptation are conducted to investigate the robustness of MSR-II. Evaluations on the task
of Japanese text input show that: (1) MSR/MSR-II significantly outperforms a traditional trigram model, reducing CER by 20.9%; (2)
MSR/MSR-11 is comparable to the other two state-of-the-art discriminative algorithms, Boosting and Perceptron; (3) MSR-II outperforms
MSR not only in time/space complexity but also in the stability of feature selection; (4) Experimental results of domain adaptation show the
robustness of MSR-11. In all, MSR/MSR-II is a quite effective algorithm. Given its step loss function, MSR/MSR-11 could be widely applied to
many fields of NLP, such as spelling check and machine translation.
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