论文与报告

基于动态补偿的矩形广义系统线性二次最优控制

张国山, 刘蕾

1. 天津大学电气与自动化工程学院 天津 300072

收稿日期 2010-6-29 修回日期 2010-9-10 网络版发布日期 接受日期 摘要

考虑了基于动态补偿的矩形广义系统线性二次最优控制问题.首先给出具有适当动态阶的补偿器,使得闭环系统正则、稳定、无脉冲(称为容许),而且相关的矩阵不等式和Lyapunov方程解存在.进一步二次性能指标可写成一个与该解和系统初值相关的表达式.为了求解系统的最优控制问题,将该Lyapunov方程转化为一个双线性矩阵不等式,并给出了相应的路径跟踪算法以最小化二次性能指标,进而得到最优补偿器.最后,通过数值算例说明本文方法的有效性和可行性.

 关键词
 矩形广义系统
 动态补偿器
 最优控制
 路径跟踪算法
 双线性矩阵不等式

 分类号

Linear Quadratic Optimal Control Based on Dynamic Compensation for Rectangular Descriptor Systems

ZHANG Guo-Shan, LIU Lei

1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, P.R. China

Abstract

The linear-quadratic optimal control by dynamic compensation for rectangular descriptor system is considered in this paper. First, a dynamic compensator with a proper dynamic order is given such that the closed-loop system is regular, impulse-free, and stable (it is called admissible), and its associated matrix inequality and Lyapunov equation have a solution. Also, the quadratic performance index is expressed in a simple form related to the solution and the initial value of the closed-loop system. In order to solve the optimal control problem for the system, the proposed Lyapunov equation is transformed into a bilinear matrix inequality (BMI), and a corresponding path-following algorithm to minimize the quadratic performance index is proposed in which an optimal dynamic compensator can be obtained. Finally, a numerical example is provided to demonstrate the effectiveness and feasibility of the proposed approach. Key words Rectangular descriptor system dynamic compensator optimal control path-following algorithm bilinear matrix inequality (BMI)

DOI: 10.3724/SP.J.1004.2010.01752

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(1639KB)
- ▶ [HTML全文](OKB)
- ▶参考文献[PDF]
- ▶参考文献

服务与反馈

- ▶ 把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ 复制索引
- ► Email Alert

相关信息

- ► <u>本刊中 包含"矩形广义系统"的</u> 相关文章
- ▶本文作者相关文章
- · 张国山
- 刘蕾

通讯作者 张国山 zhanggs@tju.edu.cn

作者个人主

市 张国山; 刘蕾