ScholarWorks@UMass Amherst

MASTERS THESES 1911 - FEBRUARY 2014

Off-campus UMass Amherst users: To download campus access theses, please use the following link to <u>log into our proxy server</u> with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Title

Simulating a Universal Geocast Scheme for Vehicular Ad Hoc Networks

Authors

Benjamin L. Bovee, University of Massachusetts Amherst Follow

Document Type

Open Access

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded

2011

Month Degree Awarded

May

Keywords

VANET, DSRC, NS-2, MAC, IEEE 802.11p, multi-hop

Abstract

Recently a number of communications schemes have been proposed for Vehicular Ad hoc Networks (VANETs). One of these, the Universal Geocast Scheme (UGS) proposed by Hossein Pishro-Nik and Mohammad Nekoui, provides for a diverse variety of VANET-specific characteristics such as time-varying topology, protocol variation based on road congestion, and support for non line-of-sight communication. In this research, the UGS protocol is extended to consider inter-vehicle multi-hop connections in intersections with surrounding obstructions along with single-hop communications in an open road scenario. Since UGS is a probabilistic, repetition-based scheme, it supports the capacity-delay tradeoffs crucial for periodic safety message exchange. The approach is shown to support both vehicle-to-vehicle and vehicle-to-infrastructure communication. This research accurately evaluates this scheme using network (NS-2) and mobility (SUMO) simulators, verifying two crucial elements of successful VANETs, received packet ratio and message delay. A contemporary wireless radio propagation model is used to augment accuracy. Results show a 6% improvement in received packet ratio in intersection simulations combined with a decrease in average packet delay versus a previous, well-known inter-vehicle communication protocol.

First Advisor

Russell Tessier

Download

DOWNLOADS

Since August 24, 2011

Included in

Digital Communications and Networking Commons, Systems and Communications Commons

Share

mulating a Universal Geocast Scheme for Vehicular Ad Hoc Networks" by Benjam						3	
COinS							