本期目录 | 下期目录 | 过刊浏览 | 高级检索

[打印本页] [关闭]

论文

基于最小均方误差和稀疏特征的欠定盲源分离

白树忠1,2,刘 琚2,孙国霞2

1. 山东大学电气工程学院, 山东 济南 250061; 2. 山东大学信息科学与工程学院, 山东 济南 250100 摘要:

针对欠定条件下的盲源分离问题,即观测信号个数小于信源个数的情况,提出了一种基于最小均方误差和稀疏特征的算法.首先,利用变换后信源的稀疏特征,采用一新的势函数通过聚类算法估计混叠矩阵.然后利用混叠矩阵和信源自身的相关性,通过寻找信源在聚类方向时间点上的精确值,以均方误差最小为准则寻找最佳分离矩阵实现信源的分离,克服了传统的分离算法在寻找最佳分离子矩阵方面的缺点.仿真结果显示使用该方法分离的信号具有更高的信噪比,和其他同类方法相比具有更优越的分离性能.

关键词: 稀疏性 欠定分离 最小均方误差

An algorithm for under-determined blind source separation based on the least-mean-square error and sparse features

BAI Shu-zhong ^{1,2}, LIU Ju², SUN Guo-xia²

1. School of Electrical Engineering, Shandong University, Jinan 250061, China; 2. School of Information Science and Engineering, Shandong University, Jinan 250100, China

Abstract:

An algorithm was presented based on the least-mean-square error and sparse features for under-determined blind source separation, i.e., observed signal numbers are less than sources numbers., Based on clustering method, the mixing matrix was first estimated by a new potential function using the sparseness of sources. By using the estimated mixing matrix and the self-correlation of sources and searching the accurate values at the source clustering directions, the optimal sub-matrix for separation was obtained according to the least-mean-square error criterion. This can overcome the disadvantages of traditional algorithm in searching the optimal sub-matrix. Simulation results show the separated signals have higher SNR, and the proposed approach has better separation performance compared with the other similar methods.

Keywords: sparseness under-determined separation the least-mean-square error

收稿日期 1900-01-01 修回日期 1900-01-01 网络版发布日期 2008-08-16

DOI:

基金项目:

通讯作者: 白树忠

作者简介:

本刊中的类似文章

Copyright 2008 by 山东大学学报(工学版)

扩展功能

本文信息

Supporting info

PDF(1168KB)

[HTML全文](OKB)

参考文献[PDF]

参考文献

服务与反馈

把本文推荐给朋友

加入我的书架

加入引用管理器

引用本文

Email Alert

文章反馈

浏览反馈信息

本文关键词相关文章

- ▶ 稀疏性
- ▶ 欠定分离
- ▶最小均方误差

本文作者相关文章

- ▶白树忠
- ▶刘 琚
- ▶孙国霞