本期目录 | 下期目录 | 过刊浏览 | 高级检索

[打印本页] [关闭]

论文

一种基于空域滤波的空间谱估计方法

甘泉,孙学军,唐斌

电子科技大学电子工程学院

摘要:

本文提出一种基于空域滤波的空间谱估计方法。对阵列进行相互重叠的子阵划分后,通过对子阵运用自适应波束形成方法实现对空间信号的空域滤波及干扰抑制,提高期望信号的信干噪比。提出对阵列中所划分的子阵运用二次组阵的方法,根据子阵间的位置关系以及各个子阵自适应滤波后的输出运用空间谱估计方法在指定的空间区域范围内实现对期望信号的DOA估计。仿真实验表明,相比常规谱估计方法基于空域滤波的空间谱估计方法有效地改善了期望信号所处的电磁环境,进一步提高了DOA估计的精度和抗干扰性能。

关键词: 子阵;波束形成;空间谱估计;MUSIC算法

A Spatial Spectrum Estimation Method Based on the Spatial Filtering Approach

GAN Quan, SUN Xue-Jun, TANG Bin

School of Electronic Engineering, UEST of China Chengdu

Abstract:

The paper has proposed a spatial spectrum estimation method based on the spatial filtering approach. After the overlap subarrays are set in the array, the spatial jamming signals have been filtered and restrained using the adaptive beam formed by the subarray and the SINR is increased for the desired signal. Based on the secondary combination of the subarrays, the direction-of-arrivals are estimated with the outputs of the subarrays and the locations of the subarrays using the spatial spectrum estimation method in the desired spatial regions. Simulation results show the spatial spectrum estimation method based on the spatial filtering approach has improved the electromagnetic environment for the desired signal and the estimate accuracy and the anti-jamming ability achieved are better than regular spatial spectrum estimation method.

Keywords: subarray beam forming spatial spectrum estimation MUSIC algorithm

收稿日期 2009-01-09 修回日期 2009-05-11 网络版发布日期 2010-02-25

DOI:

基金项目:

通讯作者:

作者简介:

作者Email:

参考文献:

本刊中的类似文章

文章评论

反 馈 人	邮箱地址	
反		

扩展功能

本文信息

- Supporting info
- ▶ PDF(841KB)
- ▶[HTML全文]
- ▶参考文献[PDF]
- ▶ 参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ 引用本文
- ▶ Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

本文关键词相关文章

子阵;波束形成;空间谱估

计; MUSIC算法

本文作者相关文章

- ▶甘泉
- 孙学军
- ▶唐斌

PubMed

- Article by Gan, Q.
- Article by Sun, X. J.
- Article by Tang, B.

馈 标 题		验证码	7035
-------------	--	-----	------

Copyright by 信号处理