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1. Atoms, Molecules, and Solids

• Atomic Physics’ starting point: the old Bohr model

Schrodinger equation

Time independent Schrodinger equation
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-on discrete stationary states

-radiative transitions 

quantum jumps between levels

-The old Bohr model 

-energy levels

For molecular oscillation:
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Vibrational and Rotational Energy Levels of Molecules

Figure Lowest vibrational energy levels of the N2 and CO2 molecules (the zero of energy is chosen 

at q=0). The transitions marked by arrows represent energy exchanges corresponding to photons of 

wavelengths 10.6um and 9.6um, as indicated. These transitions are used in CO2 lasers.
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Electron Energy Levels of Atoms and Molecules

Figure 4.3-3 Some energy levels of He and Ne atoms. The He transitions 

marked by arrows correspond to photons of wavelengths 3.39m and 632.8nm, 

as indicated. These transitions are used in He-Ne lasers.
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Electron Energy Levels in Solids
Isolated atoms and molecules exhibit discrete energy levels, as shown in Figs.4.3-5 to 4.3-8. For solids, 

however, the atoms, ions, or molecules in close proximity to each other and cannot therefore be 

considered as simple collections of isolated atoms; rather, they must be treated as a many-body system.

Figure 4.3-5 Broadening of the discrete energy levels of an isolated atom into bands for solis-state materials.
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Quantum-well Structure

Multi-layers of different semiconductor materials

Figure 4.3-8 Quantized energies in a single-crystal AlGaAs/GaAs multiquantum-well 

structure. The well widths can be arbitrary (as shown) or periodic.
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2. Occupation of energy levels in thermal 

equilibrium

Boltzmann distribution

( ) exp( / ), 1,2,...,m m BP E E k T m  
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Fermi-Dirac Distribution

Pauli exclusion principle



2011-5-25

7

CHAPTER 2----PHOTONS AND ATOMS

2011-5-25Fundamentals of Photonics 13

Figure 12.1-11 The Fermi-Dirac distribution f(E) is well approxiamated by the Boltzmann 

distribution P(Em) when E>>Ef.
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3.Interactions of photons with atoms

• Semi-classical view of atom excitations

e
Ze

Atom in ground state

e
Ze

Atom in excited state
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Spontaneous Emission

transition cross-section.

hn

Figure 4.4-1 Spontaneous emission of a 

photon into the mode of frequencyn by 

an atomic transition from energy level 2 

to level 1. The photon energy hnE2E1
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Decay of the number of the excited atoms

Figure 4.4-2 Spontaneous emission into a single mode causes the number 

of excited atoms to decrease exponentially with time constant 1/Psp

N(t)
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Absorption

( )ab

c
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V
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hn
Figure 12.2-3 Absorption of a photon hn

leads to an upwoard transition of the atom 

from energy level 1 to energy level 2. 
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Stimulated Emission
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When a photon enters, it “knocks” an electron from the inverted 

population down to the ground state, thus creating a new photon. 

This amplification process is called stimulated emission.
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Lineshape Function

Transition Strength

Lineshape function
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Figure The transition cross section (n) and the lineshape function g(n)
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Total Spontaneous Emission into All Modes
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• Relation between the Transition Cross Section 

and the Spontaneous Lifetime
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Stimulated Emission and Absorption
• Transitions Induced by Monochromatic Light

• Transitions Induced by Broadband Light
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Einstein Coefficients

spP A
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Homogeneous and inhomogeneous

broadening

• To describe the distribution of the emitted intensity versus the frequency 
v, we define a lineshape function g(v):

• →g(v)dv can be considered as a priori probability that a given 
spontaneous emission 2→1 will result in a photon whose frequency is 
between v and v+dv

• →Both the emission and the absorption are described by the same 
lineshape function g(v)

• →g(v) can be measured by measuring the profile of the absorption 
spectrum for the transition 1→2
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Homogeneous Broadening
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Fourier Transform

At the vicinity of the resonant frequency w0
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Lorentzian
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Lineshape Broadening

Life-time broadening
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Collision Broadening

Figure 4.4-8 A sinewave interrupted at the rate fcol by random phase 

jumps has a Lorentzian spectrum of width △n=fcol/
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Inhomogeneous Broadening

• Doppler effect

Figure 4.4-10 The radiated frequency is dependent on the direction of atomic motion relative 

to the direction of observation. Radiation from atom 1 has higher frequency than that from 

atoms 3 and 4. Radiation from atom 2 has lower frequency.
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Features of homogeneous broadening:
1. Each atom in the system has a common emitting spectrum 

widthΔ v.g(v) describes the response of any of the atoms, which are 

indistinguishable

2. Due most often to the finite interaction lifetime of the absorbing and 

emitting atoms

Mechanisms of homogeneous broadening:
1. The spontaneous lifetime of the exited state

2. Collision of an atom embedded in a crystal with a phonon

3. Pressure broadening of atoms in a gas

CHAPTER 2----PHOTONS AND ATOMS

2011-5-25Fundamentals of Photonics 36

Features of Inhomogeneous Broadening
1. Individual atoms are distinguishable, each having a slightly different 

frequency.

2. The observed spectrum of spontaneous emission reflects the spread 

in the individual transition frequencies (not the broadening due to the 

finite lifetime of the excited state).

Typical Examples:
• The energy levels of ions presents as impurities in a host crystal.

• Random strain

• Crystal imperfection
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3. Thermal light

Thermal Equilibrium Between Photons and Atoms
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Black-body Radiation
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Figure 4.5-2 Semilogarithmic plot of the average energy E of an electromagnetic 

mode in thermal equilibrium at temperature T as a function of the mode frequency 

n. At T=300K, KBT/h = 6.25THz, which corrsponds to a wavelength of 48um.
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Spontaneous emissionl

返回
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Absorption

返回
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Stimulated Emission

返回


