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Abstract 

The usual approach to loading pattern optimization involves high degree of
rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of 
the optimization process is highly dependent on the computer code used for the
investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We
employ a recently introduced machine learning technique, support vector
kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a
quadratic optimization problem. The main objective of the work reported in this
of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and
discuss its applicability, that is, complexity, speed, and accuracy. 

1. Introduction 

Decrease of the fuel cycle costs is an important factor in nuclear power
cycle can strongly benefit from the optimization of the reactor core loading pattern, that is, minimization of the
amount of enriched uranium and burnable absorbers placed in the core, while
operational and safety characteristics. 
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The usual approach to loading pattern optimization involves high degree of
rules, an optimization algorithm, and a reactor physics computer code used for evaluating proposed loading patterns.
Since the loading pattern optimization problem is of combinatorial nature and
numbers of core modeling calculations (e.g., genetic algorithms or simulated annealing algorithms), the time needed 
for one full optimization run is essentially determined by the complexity of the code
pattern. 

The aim of the work reported in this paper was to investigate the applicability of a machine learning modeling for fast 
loading pattern evaluation. We employed a recently introduced machine learning technique,
(SVR), which has a strong theoretical background in statistical learning theory. SVR is a supervised learning method 
in which model parameters are automatically determined by solving a quadratic optimization

This paper reports on the possibility of applying SVR method for reactor core
of the learning data set, as a function of targeted accuracy, influence of SVR free parameters, as well as input vector
definition were studied. 

In Section 2, the support vector regression method is discussed. Basics of fuel loading pattern development and 
optimization as well as the methodology applied for the investigation of applicability of the SVR
loading pattern evaluation are presented in Section 3. Results and discussion are given in Section 
5 the conclusions based on this work are drawn. 

2. Support Vector Regression 

Machine learning is, by its definition, a study of computer algorithms that
One of machine learning techniques is the support vector machines (SVMs) method, which has a strong theoretical
background in statistical learning theory [1]. The method proved to be a very robust technique for complex 
classification and regression problems. Although, historically speaking, the first implementation
classification problems [2, 3], in the last decade, the application of SVM for
noticeable in different fields of science and technology [4–10

generalization properties of the method. 

In the upcoming paragraphs, we will give a short introduction into the
only the most important theoretical and practical aspects of the technique. Additional information can be found in
referenced literature. 

In general, the starting point of the machine learning problem is a
model (training set) and a separate set to test the learned model (test set). Since we are interested in
regression model, we will consider a training data set, as well as

input/output pairs, representing the experimental relationship between input variables (

output value ( ):

In our case, the input vector defines the characteristics of the loading
as a target value, denotes the parameter of interest. 

The modeling objective is to find a function  such that it accurately predicts (with 

(y) corresponding to a new input vector ( ), yet unseen by the model (the model

particular input vector) [11]. 

Due to the high complexity of underlying physical process that we are
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expected to have high nonlinear properties. In the support vector regression approach, the input data vector

mapped into a higher dimensional feature space F using a nonlinear mapping function 

performed in that space. Therefore, a problem of nonlinear regression in low
linear regression in high-dimensional feature space. 

The SVR technique considers the following linear estimation function:

where  denotes the weight vector, b is a constant known as bias, 

dot product in feature space, such that  [12]. The unknown parameters 

the data points in the training set. To avoid overfitting and maximize generalization capability
regularized form of the functional, following principles of structural risk minimization (SRM), is minimized:

where  denotes regression risk (possible test set error), based on empirical risk which is

cost function  determined on the points of the training set, and a term reflecting the

model. Minimization task thus involves simultaneous minimization of the empirical risk and minimization of structural 
complexity of the model. Most commonly used cost function (loss functional) related to
“  insensitive loss function”:

where  is a parameter representing radius of the tube around regression function. The SVR

position the tube around the data, as depicted in Figure 1 [7], and according to (
which calculated values (y) lie inside this tube. The deviations of points that

function are penalized in the optimization through their positive and negative deviations

variables. 

It was shown that the following function minimizes the regularized functional

where  are Lagrange multipliers describing , and are estimated, as well as parameter 

quadratic programming algorithm, and  is a so called kernel

feature space. A number of kernel functions exist [13]. Kernel functions used in this work are described
details in the following section. 

Due to the character of the quadratic optimization, only some of the

corresponding input vectors  are called support vectors (SVs). Input vectors matching zero 

positioned inside the  tolerance tube and are therefore, not interesting for the process of model

vectors that are determined in the training (optimization) phase are the 

Figure 1: The schematic illustration of the SVR
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the information content of the training set. In most of the SVR formulations, there are two free
by the user: C-cost of the penalty for data-model deviation, and 

the chosen form of the kernel function and its corresponding parameters control the accuracy and generalization 
performance of the regression model. 

3. Methodology 

One of the key processes of both, safe and economical operations of nuclear
to be more precise, fuel loading pattern determination and optimization. Every method and technique used for fuel 
loading pattern determination and optimization tasks, whether based on engineering
genetic algorithms, or a combination of stated approaches, requires a large number of potential fuel loading patterns
evaluation. The evaluation is normally performed using a more or less
such codes is time consuming. Therefore, in this work, we are investigating the possibility of SVR method
as a fast tool for loading pattern evaluation. 

However, taking into account that the SVR method is to be used, a number of
creating a model. The first is the setting of the loading pattern that is to be investigated, including the method by 
which the experimental data points are to be generated, the definition of the input
target values. The second is the choice of the kernel function and appropriate free parameters used in the SVR model. 
Finally, SVR modeling tools have to be addressed. 

3.1. Computational Experiment Setup 

Taking into account the preliminary and inquiring characteristics of the
inventory for a single loading pattern optimization as a basis for the development of our regression models.
Krško Cycle 22 loading pattern has been used as a reference one. 121 fuel
were used for core loading in Cycle 22 have been used for generating a large number of randomly generated fuel 
loading patterns, which were then divided into training and testing data sets and
development process. The global core calculations of each of the trial loading patterns have been conducted using 
MCRAC code of the FUMACS code package, which also includes the LEOPARD code for two
preparation [14]. The calculation is based on quarter core symmetry, fixed cycle length, and fixed soluble boron 
concentration curve. 

The generation phase, that is, the definition of the loading patterns, has
order to narrow the investigated input space as much as possible, as well as to stay within the limits of the numbers
of available fuel assemblies per batch, we introduced a limitation for every
it can be placed: fuel assemblies originally placed on axes positions could be randomly placed only on axes
and vice versa. The central location fuel assembly was fixed for every loading pattern.

The most important issue in the regression model development is the
model development. Since in a quarter core symmetry setup, the NPP Kr
and having in mind the inquiring nature of the work, we decided to
core symmetry, resulting in 21 fuel assemblies defining the core. Fuel assembly (position) is defined by
enrichment, number of IFBAs, and reactor history, or at least burnup
number of potential parameters defining the input space is 63. The high dimensionality of the input space
increases the number of training points and time required for the

properties. Therefore, we decided to reduce the number of parameters by introducing 

cycle as a new parameter and representing fuel assembly only by 

64, 92, and 116 for fresh fuel). Thus, the final number of parameters defining the input space was 42.

The SVR model would eventually be used in an optimization algorithm as a fast
Therefore, the target parameters which we want to model should be the most important parameters on which such an
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evaluation is based. In this work, we used the global core effective

end of the cycle (  and ), as well as power peaking factor (

separate SVR models were built. 

3.2. Kernel Functions 

The idea of the kernel function is to enable mathematical operations to be
high-dimensional feature space [15]. The theory is based upon reproducing kernel

A number of kernel functions have been proposed in the literature. The
be used for mapping nonlinear input data into a linear feature space is highly dependent on the nature of the
representing the problem. It is up to the modeller to select the appropriate kernel function. In this paper, the focus is 
placed on two widely used kernel functions, namely, radial basis function (RBF), also called Gaussian
polynomial function (PF), which are defined by (6)

In the case of RBF kernel, parameter  represents the radius of the Gaussian kernel, while 

represents the degree of the polynomial kernel. 

As already mentioned, the behaviour of the SVR technique strongly depends on
its corresponding parameters, and general SVR “free” parameters (

were determined by a combination of engineering judgement and optimization procedure based on the application of
genetic algorithms [17]. 

3.3. SVR Modeling Tools 

Excellent results in SVR application to a wide range of classification and
science and technology, initiated creation of a number of implementations of the support vector machines
some of which are freely available software packages. In this work,
SVMTorch [18], LIBSVM [19], and WEKA [20]. 

As stated in the previous subsection, RBF and PF kernel functions have been
given in (6). However, practical parameterisation of the functions, that is, their

from code to code. For example, parameter g in LIBSVM notation for RBF represents 

comparison of codes has been performed, general kernel parameters have been set (see (
parameters were modified to reflect on these values. 

4. Results and Discussion 

4.1. Comparison of Code Packages 

The comparison of three code packages for SVR modeling, namely, SVMTorch,
conducted using a maximum training set size of 15 000 data points while the test set consisted of 5000 data points. 
The number of data points for learning models is typically enlarged until satisfactory results
are achieved. In this subsection, only the results of final models comparison are presented.
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Preliminary analyses revealed that preprocessing of the input data is
fast operation of all SVR code packages. Mainly, due to the fact that input variables span extremely different
scaling of the input data has been performed, including the scaling of
one of LIBSVM codes: SVMSCALE. 

Models for three target values ( ,  and ) were

implementation times (Pentium 4 Mobile CPU 1.7 GHz, 256 MB RAM, Windows XP SP2), and the relative number of
support vectors as the measure of model generalization characteristics. The
on 5000 data points. The accuracy of the model was determined using root mean square error (RMSE) and relative 
average deviation (RAD) defined as

where  stands for predicted value corresponding to the target value 

percentage of tested data points which had the predicted value deviate from the target value by more than 20%:

In the case of RBF kernel function, the initial values of free parameters
on the LIBSVM code. The ranges for every parameter (C, , and ) were

to 1000 for C and 0.001 to 2.0, and 1 to 7.07 ( ) for  and 

populations each consisting of 100 members. The training set consisted of 4500 data points, while the test set had 

500 data points. The best result was obtained for , 

In the case of the PF kernel function, we decided to set the d parameter to the commonly used value of 3, while for 

simplicity reasons  and  were set to 371.725 and 0.05154, respectively. Comparison results for RBF kernel

are given in Table 1 while in Table 2 comparison results for PF kernel function are presented.

The results of preliminary tests suggest that appropriate regression models
all target values regardless of the applied code package. The only difference is the learning time required for the
model to be developed. The implementation or deployment time for the execution

seconds for 5000 calculations) is not the issue. The accuracy for the 

while additional effort has to be placed on developing the  model by adjusting SVR parameters

training set size. 

4.2. Training Set Size Influence on SVR Model Quality 

Table 1: Comparison of results for RBF kernel function.

Table 2: Comparison results for PF kernel function.
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SVR model quality can be interpreted as the time required for the model
generalization characteristics of the model. As shown in the previous subsection, model implementation/deployment 
time is not the key issue. 

As discussed previously, the size of the training set influences all factors

analysis of that influence is necessary. Here, we present the results of preliminary tests conducted for 

development using LIBSVM code package (see Figure 2). The characteristics of applying other code packages on all 
target values are qualitatively very similar. 

Apart from the anomaly observed for the RMSE curve at the training set size
statistical and random characteristic of the training and testing data sets, the accuracy (RMSE) and the generalization
properties (low SV percentage) of the models increase with the increase of the
also increased exhibiting a nearly linear trend. 

5. Conclusions 

This work introduces a novel concept for fast evaluation of reactor core
regression model relying on the state of the art research in the field of machine learning.

Preliminary tests were conducted on the NPP Krško reactor core, using the
reference data. Three support vector regression code packages were employed (SVMTorch, LIBSVM, and WEKA) for 

creating regression models of effective multiplication factor at the beginning of the

multiplication factor at the end of the cycle ( ), and power peaking factor (

The preliminary tests revealed a great potential of the SVR method
loading pattern evaluation. However, prior to the final conclusion and incorporation of SVR models in
codes, additional tests and analyses are required, mainly focused
influencing its size, the required size of the training set and parameters defining kernel functions.

In the case of the scenario involving machine learning from the results of
code, we do not anticipate any major changes in the learning stage of SVR model development, as well as it its
implementation. However, generation of training and testing data sets would be
and requiring more hardware resources). 

These are the issues that are within the scope of our future research.
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