反应堆工程

聚变堆氦冷固态包层结构和⁶Li富集度对产氚率的影响

贾小波1,杨永伟1,周志伟1,经荥清1,冯开明2

1. 清华大学 核能与新能源技术研究院, 北京 100084 2. 核工业西南物理研究院, 四川 成都 610041 收稿日期 2005-12-6 修回日期 2006-4-3 网络版发布日期: 2007-5-31

摘要 在聚变堆固态包层基本参数基础上,建立简化20°模型,包层分第1壁装甲、第1壁冷却板、氚增殖区和 支撑结构。分别选择 $\operatorname{Li}_{\operatorname{a}}\operatorname{SiO}_{\operatorname{a}}$ 和 $\operatorname{Li}_{\operatorname{2}}\operatorname{O}$ 做增殖材料,应用 MCNP 程序,研究第1壁结构布置和 $\operatorname{6Li}$ 富集度对产氚率的 影响。结果表明: ¿Li富集度适宜选择在30%~80%之间;第1壁选择Be装甲可提高产氚率;冷却管板的厚度应取 3 cm以下,以避免对产氚造成不利的影响。

关键词 固态包层; ⁶Li富集度; 产氚率 分类号 TL34

Influence of Helium Cooled Solid Blanket Structure and Li Enrichment on Tritium Breeding Ratio in Fusion Reacto r

JIA Xiao-bo1, YANG Yong-wei1, ZHOU Zhi-wei1, JING Xing-ging1, FENG Kai-mi ng^2

1. Institute of Nuclear and New Energy Technology, Tsinghua University, eijing 100084, China; 2. Southwestern Institute of Physics, Chengdu 61004 1, China

Abstract Based on the preliminary parameters of fusion reactor, the calculation model with 20° r ange was built for the solid blanket including the first wall armor, the first wall cooling plate, the trit ium breeding region and the support structure. Li₄SiO₄ and Li₂O were adopted as tritium bree

der material, respectively. By using code MCNP, the influence of structure and ⁶Li enrichment o n tritium breeding ratio was studied. The results show that ⁶Li enrichment in the range of 30% to 8 0% is suitable, the beryllium armor of first wall leads to increase of the tritium breeding ratio, and t he thickness of first wall cooling plate should not exceed 3 cm to avoid negative effect on tritium p roduction.

DOI

本文信息

- ► Supporting info
- ▶ [PDF全文](725KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ 本刊中 包含"固态包层; ⁶Li富集 度; 产氚率"的 相关文章

▶本文作者相关文章

- 贾小波
- 杨永伟
- 周志伟
 - 经荥清 冯开明

Key words solid blanket ⁶Li enrichment tritium breeding ratio