	首 页	所况简介	机构设置	科研成果	科研队伍	国际交流	所地合作	党群工作	创新文化	图书馆	研究生博士后	信息公开	
	新闻动	前闻动态		您当前所在位置: 首页>新闻动态>科研进展									
	图片新闻 综合新闻		研究所新型高效隔热材料热调控研究取得新进展										
	学术 科研:	活动 进展			发稿时间	可: 2014-09-04	作者: 邱珥	* 来源: 传	专业传质研究中心	公 【字号:	小中大】		
	媒体报道			通i 现实的i	过"节流"来 途径,而开发	提高能源使用 新型高效智能	效率,是在现 微纳米热调控	有能源结构和 材料对于大幅	使用模式状态 度提高国民经	下,解决自 济各领域的	 悲源緊缺问题最有効 的节能效率,具有重	t、直接、 直大的现实	
邮箱登录 用户名: 密码:		@ iet.cn ✔ 登录	意义。; 物理规(尚不完) 的方法。	近年来,微纳: 聿,对于指导 善,严重阻碍 显得日益迫切。	米结构对于材 高效节能材料 了新型高效智 。	料热物理性质 的设计合成至 能微纳米材料	的显著影响已 关重要。目前 的设计和开发	经得到证实和 人们对在微纳 。基于此背景	1广泛关注, 1米尺度上热 ,研究新型	进一步揭示微纳尺 & 传递的表征和基本 型高效智能微纳米材	是度下的热 5规律认识 1料热调控		

请输入关键字

科研机构

能源动力研究中心

循环流化床实验室

传热传质研究中心

燃气轮机实验室

储能研发中心

国家能源风电叶片研发(实验)中心

分布式供能与可再生能源实验室

高强度聚甲基丙烯酰亚胺(Polymethacrylimide, PMI)泡沫作为一种新型高效智能微纳米材料一直受到了关注,因其优良的耐高温及隔热特性,常作为树脂基复合材料三明治夹层结构材料,在风力发电机叶片,飞机、直升机机翼、大型船舶、雷达天线罩等领域有广泛的用途。新一代通过分子剪裁和重组等关键技术制备的高强度PMI泡 沫实现了高强度(7.5 MPa)、高模量及高耐温(230 ℃)性能。然而,关于其热学性能的调控还没有形成理论,阻碍了对其结构的优化设计及隔热性能的进一步提升。

近日,工程热物理研究所传热传质研究中心科研人员研究出高强度PMI泡沫的热输运性能与微观结构的定量表 述关系。PMI泡沫微观下的形貌可以比拟于蜂窝状的闭孔类五边形十二面体结构(见图1)。这种形貌结构的直接结 果是PMI泡沫的热输运主要由三种模式决定:固相热传导、气相热传导和热辐射。科研人员建立了针对这种微观形 貌结构的等效热导率计算模型,并与实验表征的一系列具有不同表观密度的高强度PMI泡沫的等效热导率进行了比 较。研究获得了一系列重要结果:1.该模型可以精确描述此类闭孔类五边形十二面体泡沫结构的热导率,气相热传 导主导了泡沫的热输运,其次是固相热传导,热辐射的贡献最小;2.与结构参数(壁面厚度,隔断直径,单元直 径)相比,密度在影响PMI泡沫热输运方面起到了决定性的作用(图2所示)。对于固定几何尺寸的PMI泡沫,其有 效热导率可通过调整至最佳密度而得到进一步的优化;3.热导率随温度成线性增长的趋势(图3所示),这是因为 主导热输运的气相热导率随温度成线性增长。该计算模型能为高强度PMI泡沫的热调控提供理论指导。

图1不同密度的高强度PMI泡沫SEM图: (a) 50kg • m⁻³, (b) 70 kg • m⁻³, (c) 80kg • m⁻³, (d) 110 kg • m⁻³, (e) 155 kg • m⁻³, (f) 180kg • m⁻³

图2 高强度PMI泡沫材料等效热导率随密度变化的"构效关系"

图3 高强度PMI泡沫材料等效热导率随温度变化规律

上述工作得到了国家自然科学基金项目、国家重点基础研究发展计划(973)的支持。研究成果已在热物性研究领域的国际权威杂志International Journal of Thermophysics上发表。

评论

相关文章

Copyright © 2009 中国科学院工程热物理研究所 单位地址:中国北京北四环西路11号 单位邮编: 100190 联系电话: +86-10-62554126 电子邮件: iet@iet.cn 京ICP备05058839号-1 文保网安备案号: 110402500028