# THERMAL SCIENCE

| nome             |
|------------------|
| about            |
| publishers       |
| editorial boards |
| advisory board   |
| for authors      |
| call for papers  |
| subscription     |
| archive          |
| news             |
| links            |
| contacts         |

authors gateway

| username |  |
|----------|--|
| •••••    |  |
| submit   |  |

Are you an author in Thermal science? In preparation.

# THERMAL SCIENCE International Scientific Journal

## Janis Zandersons, Aivars Zhurinsh, Edward Someus

PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS Authors of this Paper Related papers Cited By External Links

#### ABSTRACT

If a small-scale clean coal fueled power plant is co-fueled with

5% of creosote-treated used-up sleeper wood, the decontamination by carbonisation at 500°C in an indirectly heated rotary kiln with the diameter 1.7 m and effective length 10 m can be realised. It should be included in the "3R-Carbonisation Plant" system, which processes coal. It will improve the heat balance of the system, since the carbonisation of wood will deliver a lot of high caloricity pyroligneous vapour to the joint furnace of the "3R-Carbonisation Plant". Pine wood sleeper sapwood contains 0.25% of sulphur, but the average pine sleeper wood (sapwood and heartwood) 0.05% of sulphur. Most of the sulphur is lost with the pyroligneous vapour and burned in the furnace. Since the "3R-Carbonisation Plant" is equipped with a flue gases cleaning system, the SO2 emission level will not exceed 5 mg/m3. The charcoal of the sapwood portion of sleepers and that of the average sleeper wood will contain 0.22% and 0.035% of sulphur, respectively. The increase of the carbonisation temperature does not substantially decrease the sulphur content in charcoal, although it is sufficiently low, and the charcoal can be co-fired with clean coal. The considered process is suitable for small power plants, if the biomass input in the common energy balance is 5 to 10%. If the mean distance of sleepers transportation for Central and Eastern Europe is estimated not to exceed 200 km, the co-combustion of clean coal and carbonised sleepers would be an acceptable option from the environmental and economic points of view. **KEYWORDS** 

co-combustion, clean coal, railway sleepers, carbonization, charcoal, creosote-treated wood PAPER SUBMITTED: 2005-05-25 PAPER REVISED: 2006-03-07 PAPER ACCEPTED: 2006-03-14 CITATION EXPORT: view in browser or download as text file THERMAL SCIENCE YEAR 2006, VOLUME 10, ISSUE 3, PAGES [109 - 118] REFERENCES [view full list]

- Probleme.. Holz als Roh- uuel Werkstoft 48 (1990), 19-24.
- 2. Becker, L. Matuschek, G., Lenoir, D., Kettrup, A. Thermal degradation of wood treated with creosote. J. Anal. Appl. Pyrolysis, 57 (2001) 1, 15-36.
- Freeman, M., O'Dowd, W., Hargis, R., Brown, T., James, R. Pilot-scale air toxics results for PCP/creosote-treated wood co-firing for pulverised coal combustion applications. Proc. Ann. Intern. Pittsbourg Coal Conference (Comp. optical disc), (2000) 17th, pp. 1873-1890.
- 4. European Power Plant Suppliers Association LF/EIPPCB/LCP, Draft 2, Version March 2003, pp. 318-319; www.eppsa.org/BATLCP.
- Storm, C., Unterberger, S., Hein, K.R.G. Pyrolysis of biomass as pre-treatment for use as reburn fuel in coal-fired boilers. In: Progress in Thermochemical Biomass Conversion. Ed. A.V. Bridgwater, Blackwell Science Ltd, Oxford, London, Edinburgh, 2001, pp. 1433-1451.
- 6. Zandersons, J., Gravitis, J., Kokorevics, A., Zhurinsh, A., Bikovens, O., Tardenaka, A., Spince, B.. Studies of the Brazilian sugarcane bagasse carbonization process and products properties. Biomass and Bioenergy, 17 (1999) 3, 210-219.
- 7. Busayev, A.I., Simonova, L.N. Analytical chemistry of sulphur. Nauka Publishers, Moscow, (1977) (in Russian).
- 8. Someus, E. "3R" Solid fuel preventive pretreatment cleaning. Clean fuels for cost efficient clean energy. Download: www.terrenum.net/cleancoal, June, 2003.
- Kircherer, A., Görres, J., Spliethoff, H., Hein, K.R.G.. Biomass co-combustion for pollutant control in pulverised coal units, in: Proc. 2nd APAS Task-Group Meeting Co-combustion, 14-15 March, (1994) Esbjerg/DK.
- 10. Shulgin, Y.N., Efremov, L.M.. Analysis of energy consumption in the charcoal production, in: Coll. Articles of CNILHI, Forest Industry Publ. House, Moscow, (1988) pp. 5-16 (in Russian).
- Schwaiger, H., Zimmer, B. A comparison of fuel consumption and greenhouse gas emissions from forest operations in Europe. European Forest Institute. Discussion paper 10, (2001) pp. 33-51.

### PDF VERSION [DOWNLOAD] PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS

