天津翔 悅

天津翔悦密封材料有限公司

弗莱希波·泰格 金属波纹管有限公司

温州环球阀门制造有限公司

北新集团建材股份有限公司

微滤作为反渗透的预处理回收循环冷却水排污水的可行性

大唐国际发电股份有限公司张家口发电厂(075133) 侯红星 赵学民

【摘要】研究微滤作为反渗透的预处理,回收电厂循环冷却水排污水的可行性,并确定最佳工艺条件。实验表明,微滤作为反渗透的预处理回收电厂循环冷却水排污水是完全可行的。

【关键词】微滤 絮凝 pH 浊度 SDI值 流量 可行性

张家口发电厂二期有4台300MW机组,循环冷却水采用加酸、加缓蚀阻垢剂处理,循环倍率控制在 2.8-3.0,单台排污量250-190T/h。为了提高节水效果,拟采用微滤+反渗透对循环水系统的排污水处 理,提高水的回收利用率。

1 实验目的

通过实验验证微滤(MF)作为反渗透的预处理,处理循环水排污水的可行性(即能否达到反渗透入口水浊度≤0.2NTU,SDI≤3的要求),并确定微滤设备运行的工艺条件。

2 实验基础数据

2.1 电厂有关设计参数

张家口发电厂二期4台机组,循环水基本参数为:

循环水流量Q=30000t/h;

系统水容积V=15000M3;

蒸发损失率: 平均P₁=1.4%;

自然通风冷却塔,有收水器,冷却塔风吹损失率: P₂=0.1%。

2.2 循环冷却水(排污水)水质

实验用水取自#5冷却水塔排污水,循环水循环倍率控制在φ=3.0±0.2,其水质分析见表1:

表1 张家口发电厂#5塔排污水水质

分析项目	结 果	单 位
РН	8. 30	
全固形物	1827	mg/L
溶解固形物	1805	mg/L
悬浮固形物	22.0	mg/L
电导率(25℃)	2450	μs/cm
耗氧量(COD)	3.70	mg/L

钙	219	mg/L
硅	19. 85	mg/L
钠	135. 0	mg/L
镁	80.7	mg/L
钾	9. 93	mg/L
钡	0.131	mg/L
锶	1.78	mg/L
铁	0.040	mg/L
锌	0.018	mg/L
铬	0.022	mg/L
砷	0.034	mg/L
铝	0.024	mg/L
铜	0.041	mg/L
汞	0.048	mg/L
磷	0.89	mg/L
氯根	133. 90	mg/L
硝酸根	132. 57	mg/L
亚硝酸根		mg/L
硫酸根	599. 3	mg/L
磷酸根		mg/L
氢氧根		mg/L
碳酸根	52.66	mg/L
重碳酸根	458	mg/L
酚酞碱度	0.87	m mol/L
全碱度	7.64	m mol/L
全硬度	8. 92	m mol/L
暂硬	7. 50	m mol/L
永硬	1.40	m mol/L
胶体硅	<1	m mol/L

注: 样品名称: 循环水排污水 采样地点: #5塔水池

采样日期: 08/15/02

报告日期: 08/20/02

气温: 30℃

外状: 无色

水温: 17.5℃

从以上数据可以看出循环水水质特点:水中溶解固形物含量高,钡、锶含量高,碳酸钙处于饱和状 态。这种水容易引起微滤、反渗透膜表面结垢。

2.3 实验装置和药品

微滤设备: 出力3-4 m^3/h ,有效膜面积22 $m^2/$ 支,膜孔径0.2 μm ,膜比通量300-400 L/m^2 .min。

流程如图1:

盐酸 絮凝剂 加酸反洗 化学清洗

↓ ↓

循环水排污水 → 潜水泵 → 原水箱 → 加药 → 微滤提升泵 → 微絮凝 → 微滤膜 → 微滤出水水箱

图1

所用药品:聚合氯化铝(PAC)、聚合硫酸铁(PFC)、聚合硅铝酸盐、MPT150絮凝剂、次氯酸钠杀菌剂、PTP2000阻垢剂、盐酸。

3 微滤设备工艺条件实验

3.1絮凝剂和加药量的确定

(1) 烧杯实验

分别选用PAC、PFC、聚合硅酸铝盐作絮凝剂作加药量实验;加药剂量分别选用10、15、20、25、30、35、40mg/L做实验。

1) 实验操作步骤

采用烧杯絮凝实验对絮凝剂种类和加药量进行选取,混凝操作分两步进行:①混合:搅拌器转速 160r/min,时间1min;②反应:搅拌器转速40r/min,时间5min。混凝后的水样静置沉淀10min,测定上清液水质,用以评价常规絮凝一沉淀工艺的处理效果。

2) 试验结论

通过烧杯实验,初步筛选PAC加聚合硅酸铝盐,剂量25、30、35mg/L,在微滤设备上进行动态实验。

(2) 絮凝剂效果动态实验

在一定的产水量(4.0m³/h)和一定的运行周期(45min)条件下,按烧杯实验确定的絮凝剂种类(PAC与聚合硅酸铝盐复合絮凝剂),分别选用剂量25、30、35mg/L,在微滤设备上进行动态实验。每一个加药剂量运行20周期以上,确定絮凝效果。连续监测出水浊度,出水SDI及压差,要求出水浊度≤0.2NTU,SDI≤3。为防止微滤表面被难溶盐堵塞,每一反洗周期加酸进行清洗。实验数据见表2(表2为每一加药量下的算术平均值)。

表2 不同絮凝剂用量下微滤出水浊度和压力

	微滤设备运	备注							
絮凝剂量	进水压力、出水浊度及SDI值								反洗加 入杀菌 剂
mg/1		5min	15min	25min	35min	45min	SDI	T/h	mg/L
	压力								

25	(Pa)	0.06	0. 31	0. 42	0. 51	0. 59	2. 15	4. 0	0
25	浊度 (NTU)	0. 19	0. 14	0. 14	0. 14	0. 14	2.15	1. 0	
30	压力 (Pa)	0. 025	0. 19	0. 29	0.36	0.40	1. 53-	4. 3	0
30	浊度 (NTU)	0.34	0. 17	0. 11	0. 11	0. 11	2. 27	7.0	O
35	压力 (Pa)	0.025	0. 23	0.34	0.43	0.50	1. 44-	4. 0	0
00	浊度 (NTU)	0.25	0. 16	0.14	0. 13	0. 13	2. 33	1.0	· ·

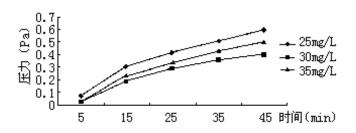


图2 不同絮凝剂用量下微滤进水压力-时间曲线

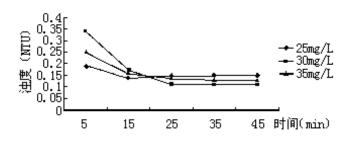


图3 不同絮凝剂用量下微滤出水浊度-时间曲线

(3) 实验结果分析

在确定的产水量(4.0m³/h)和运行周期(45min)条件下,由出水浊度变化可看出,运行前的5min 出水浊度较高,大于或接近0.2NTU,5min之后微滤出水浊度基本稳定在0.14-0.11NTU之间。浊度小于0.2NTU,SDI小于3.0。从试验记录还可看出,加药量为25mg/L,出水压差上升较快,高于加药量30mg/L、35mg/L时的出水压差,加药量为30mg/L时,出水压差平稳上升。加药量为30mg/L时,出水指标好于其他两个剂量。

3.2 产水量调节试验

(1) 实验方法

在一定的运行周期(45 min)下,控制产水量 $3.5 \text{ m}^3/\text{h}$ 、 $4.0 \text{ m}^3/\text{h}$,逐步增长到 $4.3 \text{ m}^3/\text{h}$ 。产水量 $3.5 \text{ m}^3/\text{h}$ 、 $4.0 \text{ m}^3/\text{h}$ 时,每一个反洗周期加酸清洗一次,流量控制在 $4.3 \text{ m}^3/\text{h}$;产水量 $4.3 \text{ m}^3/\text{h}$ 时,每

隔一个反洗周期加酸清洗一次,连续监测出水浊度、SDI值和压差。每一个产水量试验不少于20周期。

(2) 实验数据

表3 不同流量时微滤进水压力和出水浊度

流	微滤设备运	备注							
里	进水压力和出水浊度SDI值								反洗加 入杀菌 剂
T/h		5min	15min	25min	35min	45min	SDI	mg/L	Mg/L
0.5	压力 (Pa)	0.041	0.18	0. 25	0.30	0.33		2.5	9
3.5	浊度 (NTU)	0.24	0.15	0. 13	0.13	0. 13	2. 34- 1. 93	35	3
4. 0	压力 (Pa)	0.034	0.24	0.35	0.42	0.48		35	3
4.0	浊度 (NTU)	0.23	0. 15	0.14	0.13	0. 13	0. 26- 1. 60	35	3
4 2	压力 (Pa)	0.04	0. 19	0. 25	0. 29	0.32		20	2
4.3	浊度 (NTU)	0. 19	0.10	0.09	0.09	0.09	2. 87- 1. 53	30	3

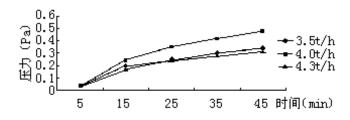


图4 不同注量下微滤进水压力-时间曲线

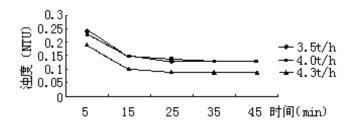


图5 不同注量下微滤进水浊度-时间曲线

(3) 实验结果分析

在流量=3.5或4.0T/h,水质趋于稳定时,出水浊度稳定在0.13-0.15NTU,SDI值在1.93-2.34或

2. 26-1. 60之间; 当流量=4. 3T/h, 出水浊度更小,可以达到0. 09 NTU, SDI值在1. 53-2. 87之间,浊度和SDI值均达反渗透入口要求。当流量=3. 5T/h时,随着过滤时间加长,压力逐渐上升,且较流量=4. 0T/h,时上升缓慢;当流量=4. 3T/h,时,压力较前两个流量上升更平缓。

3.3 运行周期试验

(1) 实验方法

测试在流量=4.3T/h条件下,运行周期由45min提高到55min时,运行各项参数。条件为:流量=4.3T/h,反洗加入杀菌剂3mg/L,每隔一个反洗周期加酸清洗一次。连续监测出水浊度、SDI值和压力差。每一个产水量试验不少于20周期。

(2) 试验数据

表4 不同运行周期出水压力和浊度

流	微滤设备运行								
量	进水压力和出水浊度SDI值								反洗加 入杀菌 剂
T/h		5min	15min	25min	35min	45min	55min	mg/L	mg/L
4. 3	压力 (Pa)	0.028	0. 19	0.24	0.28	0.31		30	3
4. 0	浊度 (NTU)	0. 17	0.09	0.09	0.09	0.09		30	
4. 3	压力 (Pa)	0.047	0. 17	0. 22	0.25	0. 28	0.30	30	3
4.0	浊度 (NTU)	0.14	0.09	0.08	0.08	0.08	0.08	30	J

(3) 实验分析

将周期由45min提高到55min,浊度〈0.2NTU,SDI值〈3,进水压力均缓慢上升。工业运行可在45-55min中选用周期。

3.4 自用水率和加酸量的确定

(1) 自用水率

每运行一周其反洗1min,用水240L;运行周期45min,周期制水量为45/60×4.3=3.2(T),自用水率=0.24/3.2×100%=7.5%。

(2) 运行中加酸量

为防止碳酸钙在微滤和后续的反渗透表面结垢,采用加入盐酸调节pH值的做法,使pH由8.6降到7.5-7.7之间,酸用量为0.99L/h(工业盐酸)。

从实际运行状况来看,反洗时需要加入盐酸,否则运行压力上升很快(>1.0Pa)。通过实验,确定每隔一周期加酸反洗一次,加酸量为0.62-0.70L。

3.5 微滤设备出水水质变化规律

在流量=4.3T/h,加药量30mg/L,运行来水加酸,调pH=7.6,反洗加杀菌剂3 mg/L,每隔一周期加酸反洗一次,加酸量0.62-0.70L条件下,取微滤出入口水分析,结果见表5:

表5 微滤出入口水水质分析

单位: mg/L

项目	微滤入口	微滤出口	项目	微滤入口	微滤出口
As	-	0. 0299	рН	8. 76	7. 46
Hg	0. 0048	0. 0190	全固形物	1510	1509
P	1. 09	0.816	溶解固形物	1504	1507
Zn	0. 0035	0.0006	悬浮物	6. 0	_
Cd	-	0.0020	COD (重铬酸钾法)	105	58
Sr	1.84	1. 79	氯离子	101.78	153. 57
Ba	0. 133	0. 139	硫酸根离子	393.63	412.5
Si	16. 1	15. 0	碳酸根	7. 60	0
Mn	0	0.0003	重碳酸根	458. 08	440.24
Fe	0. 0319	0. 0412	溶解性硅	19.85	18. 92
Cr	0. 0197	0. 0231	胶体硅	⟨1	⟨1
Mg	55. 1	63. 3	暂硬mmo1/L	7. 51	
Ca	168	190	永硬mmo1/L	1. 68	
Cu	0	0	负硬	0	
Ti	0. 0069	0.0076	F ⁻	0.44	0.42
A1	0. 115	0. 281			
Na	150	110			
K	5. 81	6. 76			

由表5可以看出:来水经微滤处理,水中悬浮物可全部去除;化学耗氧量降低;水的电导率、溶解固形物增加,这是加酸、加絮凝剂造成的;水中酚酞碱度全部中和,重碳酸根碱度降低,是由于加酸造成的;硬度基本不变。

4 结 论

从上述微滤设备的调试试验可以看出,以微滤设备进水加酸,调节pH到7.5-7.7之间,并加入絮凝剂30mg/L进行絮凝处理;反洗过程加杀菌剂3mg/L,每隔一个周期加酸反洗一次,可满足运行周期在45-50min,产品水浊度≤0.2NTU,SDI≤3的技术要求。满足反渗透进水水质要求。该项技术是一项新生的水处理工艺,设备具有占地面积小,有效膜面积大,适应性强,出水浊度低,水质稳定的特点,适合作为反渗透的预处理回收本厂循环冷却水的排污水。

文章作者: 侯红星

发表时间: 2005-04-07 00:00:00

[关闭窗口] [打印文章] [回到顶端]