研究简报

一种闭环自激式驱动的硅微机械电场传感器

熊幼芽^{①②}, 彭春荣^①, 夏善红^①

①中国科学院电子学研究所传感技术国家重点实验室 北京 100190; ②中国科学院研究生院 北京 100039

收稿日期 2008-11-17 修回日期 2009-4-27 网络版发布日期 2009-11-17 接受日期 摘要

该文提出了一种闭环自激式驱动的微型电场传感器方案。利用自动增益控制的原理实现闭环自激驱动,使得微传感器能够始终工作在谐振状态,且振动幅度保持稳定。用matlab-simulink工具对系统进行了仿真,结果表明,当传感器的谐振频率发生0.5%的漂移时,系统可以重新捕捉并锁定到新的谐振频率,和开环驱动方案相比,传感器振幅的衰减度从30%降低到0.1%之内,灵敏度从缩减50%改进到缩减0.1%之内。

关键词 微型电场传感器 闭环 自激驱动电路

分类号

Electric Field Micro-sensor with a Closed-loop Autonomous Driving Circuit

Xiong You-ya^{①②}, Peng Chun-rong^①, Xia Shan-hong^①

^①State Key Lab of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; ^②Graduate University of the Chinese Academy of Sciences, Beijing 100039, China Abstract

A new micromechanical electric field sensor system with a closed-loop autonomous driving circuit is designed and simulated. The closed-loop autonomous driving circuit, which uses the principle of auto-gain-control, keeps the micro sensor working in the resonance state, and keeps the stable resonance amplitude. The simulation result shows, compared with the open-loop driving mode, the sensor can catch the new resonance frequency, the attenuation of libration amplitude is reduced from 30% to 0.1%, and the attenuation of the sensitivity of the sensor is reduced from 50% to 0.1%, when the resonance frequency changes 0.5%.

Key words <u>Micromechanical electric field sensor</u> <u>Closed-loop</u> <u>Autonomous driving circuit</u>

DOI:

通讯作者

作者个人主

熊幼芽^{①②}; 彭春荣^①; 夏善红^①

扩展功能
本文信息
▶ <u>Supporting info</u>
▶ <u>PDF</u> (313KB)
▶ [HTML全文](OKB)
▶ <u>参考文献[PDF]</u>
▶ <u>参考文献</u>
服务与反馈
▶ <u>把本文推荐给朋友</u>
▶ 加入我的书架
▶ 加入引用管理器
▶ <u>复制索引</u>
▶ Email Alert
<u>文章反馈</u>
▶ 浏览反馈信息
相关信息
▶ <u>本刊中 包含"微型电场传感器"的</u> 相关文章
本文作者相关文章
· <u>熊幼芽</u> · 彭春荣
· <u>夏善红</u>