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ABSTRACT 

Wireless sensor networks are increasingly adopted in many engineering applications such as environmental and 
structural monitoring. Having proven to be low-cost, easy to install and accurate, wireless sensor networks serve as a 
powerful alternative to traditional tethered monitoring systems. However, due to the limited resources of a wireless 
sensor node, critical problems are the power-consuming transmission of the collected sensor data and the usage of on-
board memory of the sensor nodes. This paper presents a new approach towards resource-efficient wireless sensor 
networks based on a multi-agent paradigm. In order to efficiently use the restricted computing resources, software agents 
are embedded in the wireless sensor nodes. On-board agents are designed to autonomously collect, analyze and condense 
the data sets using relatively simple yet resource-efficient algorithms. If having detected (potential) anomalies in the 
observed structural system, the on-board agents explicitly request specialized software agents. These specialized agents 
physically migrate from connected computer systems, or adjacent nodes, to the respective sensor node in order to 
perform more complex damage detection analyses based on their inherent expert knowledge. A prototype system is 
designed and implemented, deploying multi-agent technology and dynamic code migration, in a wireless sensor network 
for structural health monitoring. Laboratory tests are conducted to validate the performance of the agent-based wireless 
structural health monitoring system and to verify its autonomous damage detection capabilities. 

Keywords: Wireless Sensor Networks, Agent-Based Monitoring, Mobile Agent Migration, Collective Intelligence, 
Distributed Intelligent Systems, Autonomous Damage Detection 
 

1. INTRODUCTION 
In the United States, more than 150,000 bridges – about 25% of the U.S. bridges – are considered structurally deficient 
[1]. In other countries, the situations are similar. In Germany, for example, more than 80% of the Federal highway 
bridges show signs of deteriorations that affect durability and longevity of the structures. The required repair and 
maintenance costs are estimated at more than €6.8 billion [2, 3]. Similar problems apply to other engineering structures, 
such as dams, buildings or wind turbines, which are subjected to ageing and environmental impacts. Thus, innovative 
structural health monitoring (SHM) systems, that are capable of continuously assessing the actual conditions of 
engineering structures by automatically sensing and analyzing relevant structural data, are needed. SHM systems built 
upon wireless sensor technology, having proven to be both accurate and inexpensive, are increasingly popular [4]. 

Composed of several wirelessly connected sensor nodes, wireless sensor networks are capable of self-interrogating 
collected monitoring data for signs of structural damage using sensor-based embedded engineering algorithms [5-7]. 
Referred to as “smart structures” or “intelligent infrastructure”, today’s state-of-the-art wireless sensor networks are 
embedded in the structure automatically collecting, analyzing, condensing and communicating vast amounts of data 
obtained from the structure and from its environment. Valuable information about the structure is collected in real-time 
to be used for local damage detection and, furthermore, for detecting global emergent structural patterns, in particular 
structural anomalies. These patterns could serve as a basis for gaining holistic knowledge about the structural system. 

However, a collaborative self-interrogation of large amounts of measured data executed by inherently resource-poor 
sensor nodes entails high energy consumption. In addition, the utilization of sophisticated embedded engineering 
algorithms, needed for an accurate safety assessment, requires comprehensive computational power of the sensor nodes. 
Thus, the objective of the research presented in this paper is twofold: First, an efficient as well as accurate self-
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assessment of the structural condition is envisaged, to be collaboratively performed by the sensor nodes. Second, the 
resource consumption of the sensor nodes is to be reduced with respect to memory utilization (due to embedded 
algorithms used) and power consumption (due to communicated data). Both self-assessment and resource efficiency is 
realized through the concept of mobile agent migration, which is implemented into a wireless sensor network for the 
purpose of decentralized structural health monitoring. 

Representing a topic of increasing importance in science and in engineering practice, multi-agent technology provides 
means and tools to create decentralized software systems that are composed of collaborating software entities (“software 
agents”). Software agents are self-contained, fine-grained computational entities working towards their goals on behalf 
of another artificial entity or a human individual. Agent properties commonly include concepts of pro-activity, reactivity, 
autonomy and communication [8-11]. A software agent is capable of acting with a certain degree of flexibility and 
autonomy, deciding on its own which actions are appropriate to achieve its goal and which other cooperative agents 
might be requested for assistance. The linkages of such agents form a distributed multi-agent system being scalable and 
easily to be extended or modified by adding further specialized software agents. 

In the last decade, considerable success has been encountered in porting multi-agent technology on mobile devices such 
as cell phones, smart phones or wireless sensor nodes [12-16]. Thereby, the distinctive strengths of multi-agent systems, 
such as modularity, flexibility and extensibility, are utilized on mobile applications facilitating dynamic distributed 
computing. The majority of the main manufacturers of mobile devices supports some form of the Java programming 
language [17]. Consequently, most approaches towards mobile multi-agent systems, i.e. multi-agent systems 
distributively running on mobile devices, are based on Java, typically on the Connected Limited Device Configuration 
(CLDC) subset of the “Java Platform, Micro Edition” (Java ME). Recent developments of mobile multi-agent systems 
are, e. g., DARPA CougaarME [14], AFME [18], MicroFIPA-OS [19], 3APL-M [20, 21] and JADE-LEAP [22-26]. 
These agent platforms are designed to face a common but unique set of technical challenges: Agent infrastructure, agent 
communication and agent interaction protocols must be provided on computationally constrained devices in open, 
dynamic and decentralized environments. Owing to the limitations of the mobile devices, mobile agent platforms usually 
use a lightweight Java virtual machine and significantly smaller APIs than those designed for desktop environments [27, 
17]. 

In recent years, it has been recognized that the performance and the dynamic behavior of mobile multi-agent systems can 
further be enhanced by dynamic code migration. Having already demonstrated high effectiveness in conventional wired 
decentralized systems, dynamic code migration represents an emerging and powerful paradigm that is already supported 
by some mobile multi-agent systems of the latest generation [28, 29]. Code migration, i.e. agents physically migrating 
from one mobile device to another including dynamic behavior, actual state and specific knowledge, enables mobile 
multi-agent systems to dynamically adapt to certain changes and altered conditions of their environment, and to reduce 
network load and latency. A few approaches towards mobile multi-agent systems have already been implemented, 
mostly being applied to mobile commerce, medical applications and distributed traffic detection (e.g. [16, 30-32]). Also, 
code migration has already been used in distributed engineering applications [33, 34]. However, the potential of agent 
migration in wireless structural health monitoring systems has not yet been investigated, nor have migration-based 
wireless sensor networks been implemented to solve current SHM problems. 

In response to the abovementioned limitations of current wireless sensor networks, this research proposes an innovative 
approach that incorporates the integration of multi-agent technology and dynamic code migration into a wireless SHM 
system 

1. to allow the sensor nodes collaboratively self-assessing the condition of the observed structure and  

2. to enhance the resource efficiency of the sensor nodes with respect to data communication and on-board 
memory usage. 

This paper is organized as follows: First, an overview of the proposed agent-based wireless SHM system is given. 
Focusing on the embedding of multi-agent technology into wireless sensor nodes, the development of the prototype 
system is shown. Specifically, the design and implementation of mobile agents is described. To validate feasibility and 
performance of the prototype system and to verify its autonomous damage detection capabilities, validation tests are 
conducted in the laboratory. The results are discussed and the performance is compared to traditional approaches 
commonly used in current wireless sensor networks. The paper concludes with an outlook on future research that is 
envisaged to further improve the proposed concept. 



 
 

 
 

2. DESIGN AND IMPLEMENTATION OF AN AGENT-BASED WIRELESS SENSOR 
NETWORK 

To reduce the quantities of communicated measured data and to economically utilize the restricted computing resources, 
mobile agents – representing “on-board agents” – are embedded in the wireless sensor nodes. The total set of agent-
based sensor nodes forms a mobile multi-agent system. The on-board agents are designed to autonomously collect, 
analyze, condense and communicate the measured data of a monitored structure; they are continuously executing 
relatively simple yet resource-efficient algorithms in real-time at relatively low sampling rates. If having detected 
(potential) anomalies, specific algorithms and further knowledge is required for a more comprehensive interrogation of 
the data. Thus, specialized software agents (“migrating agents“) are requested by the on-board agents on demand to 
physically migrate from an on-site local computer system or from adjacent sensor nodes to the respective sensor node. 
Possessing the required expert knowledge and specific algorithms, a migrating agent is capable of performing 
appropriate decision-making directly on a sensor node. 

2.1 Architecture of the agent-based wireless SHM system 

The prototype SHM system is composed of three basic components as graphically depicted in Fig. 1: (i) wireless sensor 
nodes, (ii) a base station and (iii) a local computer. 

i. Each wireless sensor node hosts a set of on-board agents. In case of detected anomalies, the on-board agents 
proactively adapt their behavior to the new situation, e.g. by modifying the data sampling rate, and request 
expert knowledge from other sources within the SHM system. A collection of wireless sensor nodes forms a 
cluster which is managed by a head node that performs administrative tasks and hosts migrating agents (but 
does not collect or analyze sensor data). 

ii. The base station serves as an interface between the wireless sensor nodes and the local computer installed on-
site. It forwards sensor data and information, assembled by the agents, from the wireless sensor nodes to the 
local computer for persistent storage and further processing. Vice versa, commands sent from the local 
computer are communicated via the base station to the wireless sensor nodes. 

iii. The local computer receives and processes the information from the sensor nodes. It also allows users to 
interact with the wireless sensor network and connects external resources to the wireless sensor network. 

 
Figure 1. Architecture of the agent-based wireless SHM system. 

 

2.2 Overview of the wireless sensing unit hardware 

To demonstrate the concept of an agent-based wireless SHM system, Java-based wireless sensing units, named 
SunSPOTs, are employed for the prototype implementation. SunSPOTs, manufactured by Sun Microsystems, have 
already proven their practicability and performance in a multitude of scientific projects [35-37]. As a distinct advantage, 
unlike common embedded applications for wireless sensor networks which are usually written in low-level native 
languages such as C/C++ and assembly language, the sensing units comprise a fully capable Java ME, that is widely 
used, for example, on advanced mobile phones. The computational core of a sensing unit is an Atmel AT91RM9200 
system on a chip (SoC) incorporating a 32-bit ARM920T ARM processor with 16 kB instruction and 16 kB data cache 
memories executing at 180 MHz maximum internal clock speed. The SoC includes several peripheral interface units 
such as USB host port, USB device port, Ethernet MAC, programmable I/O controller, serial peripheral interface 



 
 

 
 

controller, two-wire (I2C) interface, etc. Memory of the sensing unit is a Spansion S71PL032J40 consisting of 4 MB 
flash memory and 512 kB RAM. 

For wireless communication, the IEEE 802.15.4-compliant Texas Instruments (Chipcon) CC2420 single-chip transceiver 
is deployed operating on the 2.4 GHz unregulated FCC industrial, scientific and medical (ISM) band. For acceleration 
measurements, the low-power 3-axis linear accelerometer LIS3L02AQ, manufactured by STMicroelectronics, is used. 
Consisting of a Micro-Electro-Mechanical System (MEMS) sensor element, the LIS3L02AQ measures a bandwidth of 
4.0 kHz in x- and y-axis and 2.5 kHz in z-axis over a scale of ± 6 g. In addition, the wireless sensing unit provides an 
integrated temperature sensor, an ambient light sensor, 2 momentary switches, facilitating the user interaction with the 
unit, 6 analog inputs as well as 5 general purpose I/O pins and 4 high current output pins.  

On the software side, the core of the unit is the Squawk virtual machine that is compliant with the Connected Limited 
Device Configuration (CLDC) 1.1 Java ME configuration. The Squawk virtual machine runs on the wireless sensing unit 
without an underlying operating system. Instead, compact operating system functionalities are included in the Squawk 
virtual machine. As a result, memory is saved that would otherwise be consumed by the operating system. In addition, 
the Squawk virtual machine executes directly out of the flash memory. As Squawk is mostly written in Java, further 
memory savings arise because Java byte code is a more efficient representation than its equivalent in native code. 
Whereas most Java virtual machines run a single application, Squawk can run multiple applications, each being 
represented as an object and completely isolated from all other applications [38-40]. In total, a high degree of portability, 
flexibility, extendibility and maintainability as well as an ease of debugging is achieved which makes Squawk a 
powerful virtual machine well-suited as a foundation for prototyping Java-based multi-agent systems for wireless 
structural health monitoring. 

2.3 Embedded software design and implementation 

For the prototype implementation of the agent-based wireless SHM system, on-board agents as well as migrating agents 
are embedded into the sensor nodes forming a mobile multi-agent system. The mobile multi-agent system is designed 
based on the “MAPS” agent architecture as proposed by Aiello et al. [30, 41, 42]. The MAPS architecture is 
characterized by components offering a set of services to the agents such as message transmission, agent creation, agent 
cloning, agent migration, timer handling and, also, access to sensor node resources including, e.g., sensors, actuators, 
flash memory, battery or radio. 

Technically, both on-board agents and migrating agents are implemented as components interacting through events. The 
component- and event-based approach allows modeling the dynamic behavior of the mobile multi-agent system through 
multi-plane state machines [43, 44]. A multi-plane state machine consists of several functions, variables and planes. One 
plane represents one behavior of an agent corresponding to the agent’s role within the mobile multi-agent system. 
Accordingly, an agent that assumes several roles is represented through a composite behavior integrating several planes. 
A fundamental part of a plane is an automaton that controls the dynamic behavior of a plane, and thus of the agent, using 
Event-Condition-Action (ECA) rules. ECA rules within the mobile multi-agent system are represented by the triplet 

rMMAS = <E, C, A>,            (1) 

where E is the event set, C is the condition set and A are the atomic actions to be taken. An action of an ECA rule, 
transferring the automaton in the next state, is triggered when the event is detected and the condition is satisfied. The 
events of an agent, triggering actions of other agents in the mobile multi-agent system, are communicated 
asynchronously between the agents using unicast, multicast or broadcast inter-agent communication. 

Fig. 2 shows an abridged UML class diagram illustrating the main classes of the implemented mobile multi-agent 
system. In particular, the classes related to the on-board and migrating agents are illustrated. The implementation of 
these agents and the corresponding agent behaviors is described in the following subsections. 



 
 

 
 

 
Figure 2. Abridged UML class diagram of the mobile multi-agent system extending the MAPS architecture. 

 

On-board agents 

Two on-board agents, the TemperatureAnalysisAgent and the AdministratorAgent, are prototypically implemented to be 
situated on each sensor node. The AdministratorAgent is responsible for the administration of a sensor node; it manages, 
for example, hardware and network features and provides information about memory usage, battery status and radio 
configurations. The TemperatureAnalysisAgent is designed to continuously collect and analyze temperature data from 
the observed structure. Its purpose is to detect anomalies, i.e. abnormal temperature changes, based on resource-efficient 
embedded algorithms. As illustrated in Fig. 3, for continuous temperature interrogations the TemperatureAnalysisAgent 
senses periodically temperature data via the on-board ADT7411 temperature sensor and compares the measurements 
with threshold values. Threshold values as well as sampling rates can be modified by the agent or, through the local 
computer, by human individuals. In case of detected anomalies, the TemperatureAnalysisAgent communicates the 
observed symptoms to the head node (s. Fig. 1) and requests specialized migrating agents capable of investigating the 
observed anomaly in detail. Simultaneously, the TemperatureAnalysisAgent increases the temperature sampling rate. 
The dynamic agent behavior described is implemented in the TemperatureAnalysisCompositeBehavior class in terms of 
a state machine illustrated in Fig. 3. 

 
Figure 3. Dynamic agent behavior implemented as ECA automaton. 

 



 
 

 
 

Migrating agents 

The migrating agents are capable of physically migrating from one node to another including their dynamic behavior, 
actual state and specific knowledge. Hosted on a head node, migrating agents are sent to a sensor node if potential 
anomalies are observed by the on-board agents situated on the respective sensor node. Arrived on a sensor node, the 
migrating agents apply their inherent analysis capabilities to achieve new information about the structural condition and 
send the analysis results to the connected local computer. On the local computer, the information can be assembled 
providing, together with the information received from other sensor nodes, a holistic picture about the current structural 
condition. 

The agent migration is implemented utilizing methods for hibernation/dehibernation and serialization/deserialization of 
objects provided by the Squawk Java virtual machine. Assuming agent migration from a head node H (source node) to a 
regular sensor node S (destination node), the destination node is contacted by the source node through a message. Next, a 
socket is opened based on the radiostream protocol. The radiostream protocol – a peer-to-peer protocol implemented on 
top of the MAC layer of the standard IEEE 802.15.4 – provides a reliable, buffered and stream-based communication 
between two sensor nodes. After having received the message from source node H, the destination node S sends an 
acknowledgement back to the node H, whereupon node H establishes a radiostream connection with node S. The 
migrating agent on H is paused, hibernated, serialized into a byte array and sent in a message to the destination node S – 
including the code, all relevant data and execution state. After having received the message, the destination node S 
deserializes, dehybernates and activates the migrating agent. 

For the prototype system, the FFTAgent, a migrating agent capable of analyzing modal properties, is implemented. The 
FFTAgent, when migrated to a sensor node S, accesses the sensing hardware of the node and collect acceleration time 
history records. The acceleration data is used for on-board damage detection as follows: To accurately identify the 
primary modal frequencies of an observed structure at the location of sensor node S, the FFTAgent analyzes the 
collected time history data based on embedded fast Fourier transforms (FFT). The agent compares the computed primary 
modal frequencies to the frequencies of the healthy state being part of its internal knowledge. For calculating primary 
modal frequencies and frequency response functions from time history data, the FFTAgent uses the computationally 
efficient Cooley-Tukey algorithm [45]. As shown in Fig. 2, the agent behavior is encoded in a modular fashion in the 
class FFTAgentBehavior, which aggregates the CooleyTukey class and is associated with the FrequencyResponse class 
handling the calculated frequency response function. The diagnostic results obtained by the FFTAgent are sent to the 
local computer for further processing. 

3. VALIDATION TESTS 
To validate the migration-based concept, laboratory tests have been conducted. The tests serve as a proof of concept of 
the implemented agent-based wireless SHM system. According to the two main objectives of this research, two goals are 
pursued by conducting the laboratory tests: First, system performance data is collected to determine the resource 
efficiency of the prototype system. Second, the capabilities of the system are examined with respect to autonomously 
detecting structural changes in a decentralized-cooperative fashion. To this end, two test series are conducted using an 
aluminum plate as well as an aluminum beam (Fig. 4). The aluminum plate experiment is primarily intended for 
collecting the performance data. The aluminum beam experiment, which is considered in the following subsection in 
more detail, is used both for collecting the performance data and for validating the autonomous health monitoring 
capabilities. For that purpose, the aluminum beam is exposed to heat. The thermally induced damage is to be detected by 
the agent-based wireless SHM system in real-time. Furthermore, the structural condition of the aluminum beam is to be 
assessed autonomously by the agents involved. The results of the condition assessment are then sent to the connected 
local computer in the form of an automatically generated safety report. 

3.1 Validation test setup 

An aluminum beam is mounted on a laboratory bench as illustrated in Fig. 4. The cantilever beam is L = 810.0 mm long, 
w = 25.4 mm wide and t = 3.2 mm thick. The sensor nodes S1, S2 and S3 are installed on the fixed end (S1), in the middle 
(S2) and on the free end (S3) of the cantilever beam. Every sensor node hosts the previously introduced (and relatively 
simple) on-board agents TemperatureAnalysisAgent and AdministratorAgent. A separate node, the head node H, hosts 
the prototypically implemented (and relatively complex) migrating agent FFTAgent. The mobile multi-agent system is 
thus composed of the agents that are situated on the sensor nodes Si and on the head node H. The base station B connects 
the mobile multi-agent system to the local computer. 



 
 

 
 

   
Figure 4. Aluminum plate assembled with agent-based wireless SHM system (left) and aluminum beam during 
instrumentation (right). 

 

3.2 Autonomous health monitoring based on agent migration and agent cooperation 

To determine the initial (undamaged) state of the cantilever beam, the free end (location of sensor node S3) is excited by 
a vertical deflection forcing the cantilever to vibrate at its characteristic frequency. Fig. 5 illustrates the vertical 
acceleration response measured at the location of sensor node S3. Fig. 6 shows the frequency response function. 
Representing the initial state of the structure, 2.42 Hz is identified from the frequency response function as the first 
modal frequency. 

 

          
 

 

To induce thermal damage to the cantilever beam, an electric coil heating element is installed below the cantilever as a 
heating source. The on-board TemperatureAnalysisAgents operating on each sensor node are continuously sensing and 
interrogating temperature measurements at sampling rates of 0.1 Hz. For the experiment, the temperature threshold value 
Tcrit = 50 °C is given to the agents. The threshold value indicates an anomaly, at which the mobile multi-agent system is 
intended to take further actions on behalf of the temperature-sensing on-board agents. Fig. 7 shows the heating process 
of the cantilever beam recorded at the locations of the nodes S1, S2 and S3. The critical temperature is reached at location 
S2 at about t = 320 s after starting the heating process. 

Figure 5. Vertical acceleration time history records 
collected at location of S3. 

Figure 6. Frequency response function of the  
cantilever beam. 



 
 

 
 

 
Figure 7. Heating process inducing thermal damage recorded at locations of S1, S2 and S3. 

 

As soon as having detected an anomaly, the TemperatureAnalysisAgent situated on sensor node S2 increases the 
temperature sampling rate and – because of its limited knowledge not being able to analyze the current situation in more 
detail – communicates the detected symptoms to the head node H. Based on the received symptoms, the head node 
initializes a FFTAgent. The agent, assembled with all required knowledge such as modal properties of the undamaged 
structure, is sent to sensor node S2 in order to analyze the current structural condition. 

After arrival at sensor node S2, the migrating FFTAgent accesses the sensor node hardware and starts collecting 
acceleration data using a sampling rate of 40 Hz. The FFTAgent executes fast Fourier transforms and derives the 
frequency response function from the acceleration time history data. Using the calculated frequency response function as 
a basis, the agent identifies the current first modal frequency of the cantilever beam as 2.27 Hz, and compares it to the 
first modal frequency of the initial condition to identify structural changes (Fig. 8). 

 
Fig. 8: Frequency response function of the cantilever beam undamaged (left) and damaged (right) as calculated by 
the migrating FFTAgent. 

 

The newly acquired information on the structural condition is transmitted by the FFTAgent from sensor node S2 to the 
base station. The base station assembles the achieved information and creates a safety report. The report is automatically 
stored by the base station on the local computer accessible by human individuals (Fig. 9). 



 
 

 
 

 
Fig. 9: Example of a safety report generated by the base station on behalf of the migrating agent. 

 

3.3 Experimental results 

During the validation tests, performance data is collected from the agent-based wireless SHM system and compared to 
current approaches commonly implemented in wireless SHM systems. The size of transmitted data as well as the 
utilization of internal node memory is recorded. Due to the deployment of agents migrating on demand in order to 
execute algorithms directly on a sensor node, a 96.4% reduction of wirelessly transferred data has been achieved 
compared to transferring the collected raw sensor data to a central server for analyses. 

As comparing to certain traditional approaches that do perform embedded algorithms directly on a sensor node, 
significant enhancements have been made by the implemented migration-based approach in terms of reduced memory 
consumption. Reasons for the resource efficiency achieved are: (i) sensing and on-board storage of unnecessary 
measurements is largely avoided and (ii) complex on-board calculations are only carried out by the specialized migrating 
agents in case that potential (or suspected) anomalies are identified. Behind the scenes, both (collected measurements 
and migrating agents) are realized as Java objects, which are not a priori implemented on a sensor node; they are created 
and migrated during runtime only if necessary. Furthermore, if they are no longer needed, the objects are marked and 
swept by means of “garbage collection” by the Squawk Java virtual machine. According to the present study, in one 
single monitoring sequence, as described above, the memory consumption of a sensor node has been reduced by 71.0 kB 
compared to the conventional execution of embedded algorithms. Therein, the FFTAgent and all associated objects, such 
as agent behavior, agent state and algorithms used, consume only 3.2 kB. The objects representing the collected 
measurements consume 67.8 kB1. 

4. CONCLUSIONS 
The design and implementation of an agent-based wireless SHM system, able to autonomously detect structural changes, 
has been presented. With the SHM system, the concept of agent migration has, for the first time, successfully been 
applied for wireless structural health monitoring. Validation tests, serving as a proof of concept of the proposed 
approach, have been conducted to test the decentralized information processing and the autonomous monitoring 
capabilities of the agent-based wireless SHM system. In the two tests, the sensor nodes have been mounted on an 
aluminum plate and an aluminum beam. The aluminum beam has been exposed to heat causing thermally induced 
damage. As a result, the damage has autonomously been detected by the agent-based wireless SHM system employing 
agent migration, distributed information processing and agent cooperation. Furthermore, the wireless transmission of 
collected sensor data within the SHM system as well as the memory consumption of the sensor nodes has been reduced 
compared to traditional approaches commonly implemented in wireless SHM systems. 

Future improvements and modifications can be made to the current implementation of the agent-based wireless SHM 
system. Research efforts are already underway exploring the applicability of the agent-based concept in other 
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engineering fields, which seems to be promising and reasonably practicable because of the portability, modularity and 
flexibility of the agent-based system. Specifically, ground water monitoring and ground motion detection are emerging 
disciplines in which the proposed migration-based monitoring concept could advantageously be deployed. 

Beyond that, future work may include further developments that can facilitate the collaborative behavior of the agents 
entailing a more accurate and efficient decentralized safety assessment. To this end, further agents with a higher degree 
of autonomy can be designed and embedded in the sensor nodes. In the same context, the decentralized information 
collected from the mobile agents can be stored in a central information pool, that comprises artificial models of the 
observed structure and is continuously updated by the agents. For that purpose, well-established and widely used 
engineering applications such as databases and software tools like MATLAB or Octave, both providing Java-based 
interfaces, can be integrated into the agent-based wireless SHM system. 

5. ACKNOWLEDGMENTS 
This research is partially funded by the German Research Foundation (DFG) under grant SM 281/1-1 awarded to 
Dr. Kay Smarsly. The research is also partially supported by the US National Science Foundation (Grant No. CMMI-
0824977). Any opinions expressed in this paper are those of the authors and do not necessarily reflect the opinions of the 
German Research Foundation and the National Science Foundation. 

REFERENCES 

[1] HSNW, "150,000 U.S. bridges are rated 'deficient'," Online: http://homelandsecuritynewswire.com/150000-us-
bridges-are-rated-deficient, Homeland Security News Wire, Locust Valley, NY, USA, July 26, 2010. 

[2] Sedlacek, G., "Sicherheit von Brücken: Bauwerksprüfer Gerhard Sedlacek registriert wachsende Schäden durch 
steigende Verkehrslasten, für die ältere Brücken nicht berechnet wurden," VDI Nachrichten, VDI Verlag GmbH, 
Düsseldorf, Germany, Aug. 10, 2007. 

[3] Gerwens, S., "Verkehrsetat 2011 - Informationen zu den Haushaltsberatungen von Bundestag und Bundesrat," 
Report, Pro Mobilität - Initiative für Verkehrsinfrastruktur e.V., Berlin, 2010. 

[4] Lynch, J. P. and Loh, K., "A Summary Review of Wireless Sensors and Sensor Networks for Structural Health 
Monitoring," Shock and Vibration Digest, 38(2), 91-128, 2006. 

[5] Lynch, J. P., "Overview of Wireless Sensors for Real-Time Health Monitoring of Civil Structures," Proc. of the 4th 
International Workshop on Structural Control and Monitoring, New York City, NY, USA, 2004. 

[6] Wang, Y., Swartz, R. A., Lynch, J. P., Law, K. H., Lu, K.-C. and Loh, C.-H., "Wireless feedback structural control 
with embedded computing," Proc. of the SPIE 11th International Symposium on Nondestructive Evaluation for 
Health Monitoring and Diagnostics, San Diego, CA, USA, 2006. 

[7] Wang, Y., Swartz, R. A., Lynch, J. P., Law, K. H., Lu, K.-C. and Loh, C.-H., "Decentralized civil structural control 
using real-time wireless sensing and embedded computing," Smart Structures and Systems 3(3), 321-340, 2007. 

[8] Wooldridge, M. J. and Jennings, N. R., "Intelligent Agents: Theory and Practice," Knowledge Engineering Review 
10(2), 115-152, 1995. 

[9] M. Wooldridge and N. R. Jennings, "Software Engineering with Agents: Pitfalls and Pratfalls," IEEE Internet 
Computing 3(3), 20-27, 1999. 

[10] Weiss, G. [Multiagent systems: a modern approach to distributed artificial intelligence], MIT Press, Cambridge, 
MA, USA, 1999. 

[11] Jennings, N. R. and Wooldridge, M. J. [Agent Technology - Foundations, Applications, and Markets], Springer, 
New York, NY, USA, 1998. 

[12] Muldoon, C., Tynan, R., O’Hare, G. M. P. and O’Grady, M. J., "Agent-based coordination for the sensor web," 
Proc. of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 2010. 

[13] Fok, C.-L., Gruia-Catalin, R. and Lu, C., "Mobile Agent Middleware for Sensor Networks: An Application Case 
Study," Proc. of the 4th International Conference on Information Processing in Sensor Networks (IPSN’05), Los 
Angeles, CA, USA, 2005. 

[14] Wright W. and Moore D., "Design considerations for multiagent systems on very small platforms," Proc. of the 
Second International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-03), Melbourne, 
Australia, 2003. 



 
 

 
 

[15] Berger, M., Rusitschka, S., Toropov, D., Watzke, M. and Schichte, M., "Porting Distributed Agent-Middleware to 
Small Mobile Devices," Proc. of the Workshop on Ubiquitous Agents on Embedded, Wearable, and Mobile 
Devices, Bologna, Italy, 2002. 

[16] Mihailescu, P., Binder, W. and Kendall, E., "MAE: A Mobile Agent Platform for Building Wireless M-Commerce 
Applications," Proc. of the 8th ECOOP Workshop On Mobile Object Systems: Agent Applications and New 
Frontiers. Malaga, Spain, 2002. 

[17] O’Hare, G. M. P., O’Grady, M. J., Muldoon, C. and Bradley, J. F., "Embedded Agents: A Paradigm for Mobile 
Services," International Journal of Web and Grid Services 2(4), 379-405, 2006. 

[18] Muldoon, C., O’Hare, G. M. P., Collier, R. W. and O’Grady, M. J., "Agent Factory Micro Edition: A Framework 
for Ambient Applications," Proc. of Intelligent Agents in Computing Systems, Reading, UK, 2006. 

[19] Tarkoma, S. and Laukkanen, M., "Supporting Software Agents on Small Devices," Proc. of the First International 
Joint Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002. 

[20] Koch, F., "3APLM Platform for Deliberative Agents in Mobile Devices," Proc. of The International Joint 
Conference on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, 2005. 

[21] Koch, F., "3APL-M Platform for Lightweight Deliberative Agents. Feb-2005. Version: 1.4," Intelligent Systems 
Group, Institute of Information and Computing Sciences, Utrecht University, The Netherlands, 2005. 

[22] Caire, G. and Pieri, F., "LEAP User Guide. 14-April-2010. LEAP 4.0," Online: 
http://jade.tilab.com/doc/tutorials/LEAPUserGuide.pdf, Telecom Italia S.p.A., Torino, Italy, 2010. 

[23] Grimshaw, D., "JADE Administration Tutorial. 26-March-2010. JADE 4.0," Online: 
http://jade.tilab.com/doc/tutorials/JADEAdmin/index.html, Telecom Italia S.p.A., Torino, Italy, 2010. 

[24] Bellifemine, F., Caire, G., Poggi, A. and Rimassa, G., "JADE - A White Paper," EXP in Search of Innovation 3(3), 
2003. 

[25] Bellifemine, F., Caire, G., Trucco, T. and Rimassa, G., "JADE Programmer’s Guide. 08-April-2010. JADE 4.0," 
Online: http://jade.tilab.com/doc/programmersguide.pdf, Telecom Italia S.p.A., Torino, Italy, 2010. 

[26] Moreno, A., Valls, A. and Viejo, A., "Using JADE-LEAP to implement agents in mobile devices," EXP in Search of 
Innovation 3(3), 2003. 

[27] Sanneck, H., Berger, M. and Bauer, B., "Application of Agent Technology to Next Generation Wireless / Mobile 
Networks," Proc. of the Second World Wireless Research Forum, Helsinki, Finland, 2001. 

[28] Warnier, M., Oey, M. A., Timmer, R. J., Overeinder, B. J. and Brazier, F. M. T., "Enforcing Integrity of Agent 
Migration Paths by Distribution of Trust," International Journal of Intelligent Information and Database Systems 
3(4), 2009. 

[29] Cucurull, J., Overeinder, B. J., Oey, M. A., Borrell, J. and Brazier, F. M. T., "Abstract Software Migration 
Architecture Towards Agent Middleware Interoperability," Proc. of the Second International Multiconference on 
Computer Science and Information Technology, Wisla, Poland, 2007. 

[30] Aiello, F., Gravina, R., Guerrieri, A. and Fortino, G., "MAPS: A Mobile Agent Platform for WSNs based on Java 
Sun Spots," Third International Workshop on Agent Technology for Sensor Networks, Budapest, Hungary, 2009. 

[31] Chen, B., Cheng, H. H. and Palen, J., "Integrating mobile agent technology with multi-agent systems for distributed 
traffic detection and management systems," Transportation Research Part C: Emerging Technologies 17(1), 1-10, 
2009. 

[32] Herbert, J., O'Donoghue, J., Ling,G., Fei, K. and Fok, C.-L., "Mobile Agent Architecture Integration for a Wireless 
Sensor Medical Application," Proc. of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and 
Intelligent Agent Technology, Hong Kong, China, 2006. 

[33] Peng, J. and Law, K. H., "Building Finite Element Analysis Programs in Distributed Services Environment," 
Computers & Structures, 82(22), 1813-1833, 2004. 

[34] Liu, D., Peng, J. and Law, K. H., "Integrating Engineering Web Services with Distributed Data Flows and Mobile 
Classes," Proc. of the ASCE International Conference on Computing in Civil Engineering, Cancun, Mexico, 2005. 

[35] Sun Microsystems, Inc., "Sun Small Programmable Object Technology (Sun SPOT) Theory of Operation," Santa 
Clara, CA, USA: Sun Microsystems, Inc., 2008. 

[36] Cifuentes, C., Arseneau, E., White, D. and Simmons, D., "Simplified Development of Wireless Sensor and Actuator 
Applications Using Java Technology," Sun Microsystems, Inc., JavaOne Conference, San Francisco, CA, USA, 
2006. 

[37] Cifuentes, C., White, D. and Arseneau, E., "Squawk: A Java VM for Wireless Sensor and Actuator Devices," Sun 
Microsystems, Inc., JavaOne 2006 Conference, San Francisco, CA, USA, 2006. 



 
 

 
 

[38] Arseneau E., White, D. and Chang Y., "The Oracle Squawk Project," Online: 
http://labs.oracle.com/projects/squawk, Oracle Corporation, Redwood Shores, CA, USA, 2007. 

[39] Simon, D., Cifuentes, C., Cleal, D., Daniels, J. and White, D., "Java on the Bare Metal of Wireless Sensor Devices: 
The Squawk Java Virtual Machine," Association for Computing Machinery, The Second International Conference 
on Virtual Execution Environments, Ottawa, Canada, 2006. 

[40] Smith, R. B., Cifuentes, C. and Simon, D., "Enabling Java TM for small wireless devices with Squawk and 
SpotWorld," Association for Computing Machinery, Second Workshop on Building Software for Pervasive 
Computing, San Diego, CA, USA, 2005. 

[41] Aiello, F., Fortino, G., Gravina, R. and Guerrieri, A., "A Java-Based Agent Platform for Programming Wireless 
Sensor Networks," Advanced online access, The Computer Journal, 2010. 

[42] Aiello, F., Carbone, A., Fortino, G. and Galzarano, S., "Java-based Mobile Agent Platforms for Wireless Sensor 
Networks," Proc. of the International Multiconference on Computer Science and Information Technology, Wisla, 
Poland, 2010. 

[43] Bölöni, L. and Marinescu, D. C., "A Multi-Plane State Machine Agent Model", Proc. of the 4th International 
Conference on Autonomous Agents, Barcelona, Spain, 2000. 

[44] Dobrowolski, G., "Programming an Agent as Abstract State Machine", Proc. of the International Workshop of 
Central and Eastern Europe on Multi-Agent Systems, Budapest, Hungary, 2005. 

[45] Press, W. H., S. A. Teukolsky, W. T. Vetterling and Flannery, B. P. [Numerical Recipes in C: The Art of Scientific 
Computing], Cambridge University Press, New York, NY, USA, 1992. 


