

Wrocław University of Technology

A quarterly of the Institute of Physics, Wroclaw University of Technology

OPTICA APPLICATION APPLICATION

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2008(Vol.38), No.1, pp. 259-266

Multinuclear MAS NMR study of structural changes in ${\rm LaF}_3$ doped borosilicate glasses for optoelectronics

Marcin Sroda, Zbigniew Olejniczak

Keywords

oxyfluoride glass, borosilicate glass, glass structure, MAS NMR, LaF₃

Abstract

A new type of oxyfluoride glass-ceramics based on the silicate glassy matrix and the nano-phase of LaF_3 was developed for generating the up-conversion luminescence processes. In such material, the low-phonon energy crystals of LaF_3 are desirable host for the rare-earth elements. The effect of admixture of 3 mol% of La_2F_6 on the structural changes of glasses in the $Na_2O-B_2O_3$ -SiO₂ system was investigated. The effect of LaF_3 additive was studied using ²⁹Si, ¹¹B, and ²³Na MAS NMR to learn more about the structural role of modifiers as well as fluorine in the glassy matrix. Glasses with compositions corresponding to different B_2O_3/Na_2O and $B_2O_3/(Na_2O + 3La_2F_6)$ ratios in the 0.6-1.2 range were obtained by melt quenching. The ²⁹Si MAS NMR spectra indicated that the [SiO₄] units are more polymerized when the ratios and the fluorine admixture increase. The ¹¹B NMR spectra revealed the presence of both [BO₄] (Q^4) and [BO₃] (Q^3) units. The fraction of Q^3 increased with the decreasing sodium content. Glasses with the LaF₃ additive showed higher BO₃/BO₄ ratios. The effect of thermal treatment for glasses with the tendency towards LaF₃ crystallization was discussed in terms of structural changes.

460.6 kB

1400.0 KD

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

