THERMAL SCIENCE

home	
about	
publishers	
editorial boards	
advisory board	
for authors	
call for papers	
subscription	
archive	Khalid N. Alam
news	EFFECT OF PRA
links	TRANSFER CHA
contacts	NUMERICAL ST
authors gateway	ABSTRACT Using the standard k axisymmetric turbul
username	heat transfer charac
•••••	revealed circulation
submit Are you an author in	predicted. Reat- tac Prandtl number of 7 The ratio of peak to number. Location of
Thermal science? In	KEYWORDS
preparation.	turbulence, Prandtl i
	PAPER SUBMITTED:
	PAPER REVISED: 200
	PAPER ACCEPTED: 2
	DOI REFERENCE: TSO CITATION EXPORT:
	THERMAL SCIENCE
	REFERENCES [view
	1. Eaton, J. K.,

THERMAL SCIENCE International Scientific Journal

mar

ANDTL NUMBER ON HEAT RACTERISTICS IN AN SUDDEN EXPANSION: A UDY

Authors of this Paper Related papers Cited By **External Links**

k-e turbulence model, an incompressible,

ent flow with a sudden expansion was simulated. Effect of Prandtl number on cteristics downstream of the expansion was investigated. The simulation downstream of the expansion. A secondary circulation (corner eddy) was also hment was predicted at approximately 10 step heights. Corresponding to .0, a peak Nusselt number 13 times the fully-developed value was predicted. fully-developed Nusselt number was shown to decrease with decreasing Prandtl maximum Nusselt number was insensitive to Prandtl number.

number, heat transfer, expansion

2007-03-03 7-10-16 007-11-10 CI0704171A

view in browser or download as text file YEAR 2007, VOLUME 11, ISSUE 4, PAGES [171 - 178] full list]

- Johnston, J. P., A Review of Research on Subsonic Turbulent Flow Reattachment, AIAA Journal, 19 (1981), 9, pp. 1093-1100
- 2. So, R., Inlet Centerline Turbulence Effects on Reattachment Length in Axisymmetric Sudden-Expansion Flows, Experiments in Fluids, 5 (1987), 6, pp. 424-426
- 3. Shahnam, M., Morris, G. J., Turbulent Flow Measurements in an Axisymmetric Sudden Expansion, Proceedings, 4th International Conference Laser Anemometry - Advanced and Application, Cleveland, Oh., USA, 1991, Vol. 3, pp. 63-69
- 4. Durrett, R. P., Stevenson, W. H., Thompson, H. D., LDV Measurements Near the Step in an

- Applications of Laser Anemometry to Fluid Mechanics, Lisbon, 1985, A86-16351 05-34
- Baughn, J. W., Hoffman, M. A., Takahashi, R. K., Launder, B. E., Local Heat Transfer Downstream of an Abrupt Expansion in a Circular Channel with Constant Wall Heat Flux, Journal of Heat Transfer, 106 (1984), 4, pp. 789-796
- Said, S., Habib, M. A., Iqbal, M. O., Heat Transfer to Pulsating Turbulent Flow in an Abrupt Pipe Expansion, International Journal of Numerical Methods for Heat & Fluid Flow, 13 (2003), 3, pp. 286-308
- 7. Hinze, J. O., Turbulence, McGraw-Hill Publishing Co., New York, USA, 1950
- 8. Launder, B. E., Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972, pp. 90-110
- 9. Kim, S., Choudhury, D., Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient, ASME FED, 1995, Vol. 217, Separated and Complex Flows
- Patankar, S. V., Spalding, D. B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer, 15 (1972), 10, pp. 1787-1806
- 11. Sharov, D., Nakahashi, K., Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flow Applications, AIAA Journal, 36 (1998), 2, pp. 157-162
- Stern, F., Wilson, R., Coleman, H., Paterson, E., Verification and Validation of CFD Simulations, Iowa Institute of Hydraulic Research, IIHR Report 407, College of Engineering, University of Iowa, Iowa City, Ia., USA, 1999
- Kakac, S., Yener, Y., Convective Heat Transfer, 2nd ed., CRC Press, Boca Raton, Fl., USA, 1995

PDF VERSION [DOWNLOAD]

EFFECT OF PRANDTL NUMBER ON HEAT TRANSFER CHARACTERISTICS IN AN AXISYMMETRIC SUDDEN EXPANSION: A NUMERICAL STUDY

Copyright © 2009 thermal science | by perfectlounge.com | xhtml | css