烧结配加干熄焦除尘焦灰的工艺技术

尹 雄 峰

(济南钢铁集团总公司第一烧结厂, 山东 济南 250101)

要:灰可在烧结生产中取代部分焦粉或无烟煤,对生产影响不大,消化了内部废弃资源,年降低烧结 矿成本56万元。

关键词:烧结;干熄焦除尘焦灰;焦粉;成本

中图分类号: TF046.4 文献标识码: B

Technology of Adding Coke Ash Deducted from Dry Quenching in Sintering

YIN Xiong-feng

(No. 1 Sintering Plant of Jinan Iron and Steel Group, Jinan 250101, China)

Abstract: Coke ash deducted from dry quenching has been used in sintering of No. 1 Sintering Plant of Jigang. It has been intensified that coke ash can replace a part of coke fines or anthracite coal in sintering, and has a little effect to be neglected on the production, and digests the interior waste resources, and decreases the cost of sinter ore about 56 ten thousand yuan per year.

Keywords: sinter; coke ash deducted from dry quenching; coke fines; cost

济南钢铁集团总公司第一烧结厂(简称济钢第一烧结厂)每年消耗固体燃料约12万t(其中自产焦粉6万 t,外购烧结用无烟煤约6万t),约占烧结工序能耗的70%,占全济钢能耗的12%。因此,2001年济钢第一烧 结厂通过改进工艺流程,将干熄焦除尘焦灰(简称除尘焦灰)用于烧结生产替代冶金焦粉,减少了资源浪费, 降低了烧结生产成本。

1 固体燃料消耗现状

济钢第一烧结厂所用固体燃料主要有自产焦粉,外购无烟洗煤主要有河北周口店无烟末煤、山西阳泉无 烟洗煤、山西白杨树无烟原煤等。2000年1~6月份所用燃料种类及其成分见表1。从近年来的生产情况看, 表1所示固体燃料种类完全能够满足烧结生产工艺的需求。近几年来主要技术经济指标见表2。

种类	Ad	Vd	Mt
> 知 任 业	12 65	9.46	1 1

表1 2000年1~6月份所用燃料成分。	0
----------------------	---

种类	Ad	Vd	Mt	Std
济钢焦粉	13. 65	2. 46	4. 4	0.63
周口店无烟煤	13. 16	6. 39	4.8	0.15
阳泉无烟煤	11. 47	6. 80	9. 0	0.99
白杨树无烟煤	10. 15	9. 65	9. 2	0.77

表2 近几年主要技术经济指标

年 份	产量/万t	利用系数/t.m ⁻² .h ⁻¹	固体燃耗/kg. t ⁻¹	工序能耗/kg. t ⁻¹
1997年	200. 9	1. 56	71.0	72. 16
1998年	220.6	1.64	58. 0	65. 96
1999年	261. 7	1. 79	50.0	59. 60
2000年	246. 2	1. 78	49.0	59. 01
2001年1~6月	111.7	1.76	48. 1	58. 01

除尘焦灰是济钢干法熄焦的烟尘处理器——陶瓷多管除尘器收集的干熄焦烟尘悬浮物,是一种粒度极细的焦粉粉尘,年产量约4200t。由于其发热值低,灰分高,含硫高,无法很好地予以利用。表3、表4分别为其粒级及成分。

表3 除尘焦灰的粒级 %

燃料种类	>3mm	3~1mm	<1mm	
除尘焦灰	5. 78	6. 49	87. 73	
焦粉	54. 24	20. 91	24. 85	

表4 干熄焦除尘焦灰的成分 %

种 类	Vd	Ad	Std	
除尘焦灰	2. 46	18. 49	0. 93	

2 除尘焦灰应用实践

干熄焦除尘焦灰到底能否用于烧结生产,对烧结矿的质量、生产过程的稳定会产生什么样的影响?为此,第一烧结厂联合焦化厂于2001年4月、5月份利用现有焦灰资源阶段性地进行了添加除尘焦灰的工业试验。

2.1 除尘焦灰燃烧机理分析

除尘焦灰实质上是一种细度极细的焦粉,从取样分析看出,小于3mm的粒级达到94.22%。在烧结混合料中以内滚和外滚两种形式粘附于烧结料颗粒的表面,焦灰粒度细,亲水性差,一部分与小颗粒料混合参与成球;一部分存在于气流通道中。附着于烧结料颗粒表面的焦灰,燃烧后为烧结矿液相生产提供热量,但是由于其粒度细,灰份含量高,热值偏低,造成其燃烧强度低于正常焦粉燃烧强度;同时有一部分被通过气孔的气流抽走,造成燃耗的升高。可适用于厚料层烧结,充分利用厚料层烧结的自动蓄热作用,减少热量损失。

2.2 配料方案

济钢焦化厂将除尘焦灰集中存放,待储存量达到1000t以上时,由第一烧结厂安排使用。烧结料由配料室经一混、二混、三混进烧结机。试验方案有四种:方案1:配料室焦灰40%;二混焦灰 60%;方案2:配料室焦灰40%;二混焦粉60%;方案3:配料室焦粉40%;二混焦灰60%;方案4:配料室焦粉20%、焦灰20%;二混焦粉30%、焦灰30%。

2.3 应用效果

各方案生产期间的主要技术经济指标如表5所示。从表5可见,使用焦灰对生产会产生一定的影响,但影响不是很大,具体表现在以下几个方面: (1)生产表明焦灰可以用于烧结生产中取代一部分焦粉或无烟煤,满足烧结矿形成液相对热量的需求。(2)第二和第四种方案较为可行,利用系数略有下降,含粉和转鼓基

本可以保持正常的生产水平,料层的透气性和负压也影响不大。(3)使用焦灰时,烧结矿燃耗上升约0.4kg/t。

表5 使用焦灰的烧结矿主要技术经济指标

试验方案	利用系 数/t.m ⁻ ³ .h ⁻¹	V _€ /cm. min ⁻	TFe /%	含粉 /%	转鼓 /%	固体燃 耗/kg. t ⁻¹	烟道负 压/kPa
1	1.72	20.3	58. 29	15. 27	72. 19	48.6	14. 3
2	1.74	21.5	58. 25	15. 23	72. 03	48.3	14. 1
3	1. 73	20. 7	58. 31	15. 15	72. 67	48. 5	14. 3
4	1. 76	22. 4	58. 29	15. 03	73. 33	48. 2	14. 05

3 效益分析

以年消化干熄焦除尘焦灰4200t计算,则可以降低烧结矿成本约为56万元。有较大的经济、社会、环保效益。

返回上页