

Vol. 47 (2004), No. 3 pp.197-204

[PDF (482K)] [References]

FT-IR Spectroscopic Study of the Reaction Mechanism for Selective Reduction of NO over Sol-gel Prepared In₂O₃-Ga₂O₃-Al₂O₃ Catalysts

<u>Masaaki Haneda</u>¹⁾, <u>Tomoko Morita</u>²⁾, <u>Yukinori Nagao</u>²⁾, <u>Yoshiaki Kintaichi</u>¹⁾ and <u>Hideaki</u> Hamada²⁾

1) Research Institute for Green Technology, National Institute of Advanced Industrial Science and Technology

2) Faculty of Science and Technology, Tokyo University of Science

(Received: October 31, 2003)

The catalytic activity of Ga_2O_3 - Al_2O_3 for the selective reduction of NO with propene was inhibited by the presence of H_2O , whereas the catalytic activity of In_2O_3 - Ga_2O_3 - Al_2O_3 was significantly promoted. Both Ga_2O_3 - Al_2O_3 and In_2O_3 - Ga_2O_3 - Al_2O_3 promoted the formation of NO_3^- , acetate, formate, nitrile, isocyanate and amino species in the absence of H_2O in the reaction gas mixture under the reaction conditions. Adsorption of organic nitro compounds, which are possible intermediates in the NO reduction, onto $Ga_2O_3^ Al_2O_3$ and In_2O_3 - Ga_2O_3 - Al_2O_3 at the reaction temperature was detected as IR bands due to nitro, nitrite, carbonyl and isocyanate species, which were also observed in the NO reduction with propene. Surface NO_3^- species were highly reactive with propene, leading to the formation of the surface species of acetate, formate, isocyanate and amino species, as well as N_2 and CO_2 . On the basis of these findings, the following reaction mechanism was proposed: organic nitro compounds are first produced through the reaction of $NO_3^$ formed by NO oxidation on the catalyst surface with propene, and then decomposed to -NCO species, and the surface -NH species generated by hydrolysis of the -NCO species react with NO_x species to produce N_2 . Although the presence of H_2O suppressed the formation of NO₃⁻ species as the initial reaction intermediate on Ga₂O₃-Al₂O₃ and In₂O₃-Ga₂O₃-Al₂O₃, the formation and subsequent decomposition (hydrolysis) of the -NCO species was promoted by H₂O over In₂O₃-Ga₂O₃-Al₂O₃. Such contrasting behavior of the -NCO species is related to the different catalytic characteristics of Ga₂O₃-Al₂O₃ and In₂O₃-Ga₂O₃-Al₂O₃ for NO reduction by propene in the presence of H₂O.

Keywords: <u>Nitrogen monoxide</u>, <u>Selective reduction</u>, <u>Propene</u>, <u>Gallium oxide catalyst</u>, <u>Indium oxide catalyst</u>, <u>FT-IR</u>

[PDF (482K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Masaaki Haneda, Tomoko Morita, Yukinori Nagao, Yoshiaki Kintaichi and Hideaki Hamada, Journal of the Japan Petroleum Institute, Vol. 47, No. 3, p.197 (2004).

doi:10.1627/jpi.47.197 JOI JST.JSTAGE/jpi/47.197

Copyright (c) 2004 by The Japan Petroleum Institute

