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Abstract

In this research, the response properties of a single-degree-of-freedom system under dual harmonic excitation are analyzed to provide
some principles for the choice of time span and step in the simulations. The performances of dynamic vibration absorber (DVA) and
state-switched absorber (SSA) are compared. The results indicate that dual DVAs almost have the same performance as the SSA. More-
over, dual DVAs compared with the SSA have some advantages such as lower ratio of tuning frequencies, more rapid optimization pro-
cess and lower requirement for the anti-fatigue property of the material. Furthermore, the performances of different frequency-tuning
methods are investigated. It is shown that the one–one method almost has the same performance as the optimization method and it does
not need time-consuming optimization process.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic vibration absorbers (DVA) have been success-
fully used to attenuate the vibration of many structures.
The DVA usually consists of a mass attached to the struc-
ture to be controlled through a spring-damper system. It is
usually used to suppress a harmonic excitation at a given
frequency (tonal tuning). The principal drawback of ton-
ally tuned absorbers is its quite small effective bandwidth.
Igusa analyzed the vibration control capabilities of multi-
ple tuned mass dampers with natural frequencies distrib-
uted over a frequency range [1]. It is found that multiple
tuned mass dampers can be more effective and robust than
a single tuned mass damper with equal total mass.

In recent years, semi-active and active-passive vibration
absorbers have been proposed to suppress harmonic excita-
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tions with time-varying frequency [2–18]. Semi-active
vibration absorbers can be separated into several types:
variable stiffness through mechanical mechanisms
[2,8,16,17] or using controllable new materials [6,12,13,
18], variable inductor connected in series with the piezo-
electric patch for piezoelectric absorbers [7,9–11]. The first
two types are used widely which can be tuned to the vary-
ing frequency by changing their resonant frequency. A lot
of adaptive vibration absorbers with variable stiffness have
been proposed and verified experimentally and shown that
these devices can effectively suppress the vibration of the
primary structure with wider-band frequency. Active-pas-
sive vibration absorbers by applying a control force on a
passive vibration absorber can improve the performance.
The active absorbers with different actuators and control
laws have been investigated and implemented [3–5,14,15].
It has advantages such as large bandwidth, high vibration
reduction level and fine robustness. But it needs large
power requirement.

Most of researches focus on the applications of
absorbers in the system under harmonic excitations with
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Fig. 1. Model of primary system.
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a single frequency. However, many systems in real applica-
tions are excited by multiple frequencies. For example a
typical system is floating raft on which several rotary
machines are mounted [19]. Many kinds of multiple-shunt
piezoelectric shunt damping which could be made effective
against several frequencies have been developed [11,14].
However, the frequencies were required to be known in
advance such that a suitable filter network could be
designed such that each shunt acted only against a single
frequency, with all other frequencies blocked. The design
and adaptation of the filter network are difficult and com-
plex. Filipovic developed a band-pass active absorber
applied to the vibration control of structure under multi-
frequency harmonic excitations [5]. It can absorb vibration
at all frequencies that belong to the band-pass range. How-
ever the main drawback of fully active approach is the
requirement of large control force.

Cunefare et al. developed a kind of state-switched absor-
ber (SSA) which is a single-degree-of-freedom oscillator,
but one with a spring whose stiffness can assume a number
of discrete values [20]. It can address the control of multi-
frequency excitation. Holdhusen used magneto-rheological
elastomers to fabricate an SSA for vibration control of
continuous system [21]. The results showed that the SSA
was effective over a larger bandwidth than that of a classi-
cal tuned vibration absorber. One of the drawbacks of SSA
is that its switching control law is not easily expanded to
the case of multiple frequencies excitations. In addition,
for steady vibration under dual-frequency harmonic excita-
tion, SSA still need change the stiffness frequently and the
switch is more frequent as the spacing in excitation fre-
quencies increased. This will decrease its working life.

The objective of the present research is to find a simple
and effective method for vibration control of multi-fre-
quency harmonic excitation by the comparisons of different
DVAs and frequency-tuning methods. At first, the
response properties of a single-degree-of-freedom system
under dual harmonic excitation are analyzed. Secondly,
the performances of a single DVA, two DVA and an
SSA applied to a single-degree-of-freedom system are com-
pared. The objective function to be optimized is the time
averaged kinetic energy of the primary system. Lastly, the
performances of different frequency-tuning methods are
investigated.

2. Properties of response to multi-frequency harmonic
excitation

The focus of this paper is on vibration reduction effects
of different absorbers for multiple harmonic excitations. As
such, our modeling and simulations will focus on simple,
ideal lump-element models. A single-degree-of-freedom
primary system under multi-frequency harmonic excitation
is depicted in Fig. 1, where x, Mp, Cp, Kp are the displace-
ment, mass, damping and stiffness of the primary system,
respectively; F is the excitation force applied on the pri-
mary system; x1, x2, F1, F2 are the forcing frequencies
and their corresponding amplitudes, respectively. Before
absorbers are introduced to the primary system, its proper-
ties of response to multiple harmonic excitations are
analyzed.

The equation of motion for the system in Fig. 1 can be
written as

Mp€xðtÞ þ Cp _xðtÞ þ KpxðtÞ ¼ F 1 sinðx1tÞ þ F 2 sinðx2tÞ ð1Þ
The driving point mobility of the primary system can be

written as

HðxÞ ¼ 1

�Mpx2 þ jCpxþ Kp

ð2Þ

where x is the frequency of the harmonic excitation force.
According to the superposition property, the steady

response of Eq. (1) can be written as

xðtÞ ¼ jHðx1ÞjF 1 sinðx1t þ /1Þ þ jHðx2ÞjF 2 sinðx2t þ /2Þ
ð3Þ

where

/1 ¼ argðHðx1ÞÞ; /2 ¼ argðHðx2ÞÞ:
Since the response includes two harmonic components,

the vibration level of the primary system can not be mea-
sured simply by the amplitude of the response. So the root
mean square of the response is analyzed. Eq. (3) can be dis-
cretized as

X ðkÞ ¼ jHðx1ÞjF 1 sinðx1kT step þ /1Þ þ jHðx2ÞjF 2

� sinðx2kT step þ /2Þ ð4Þ

where Tstep is the length of time step. The root mean square
of the response is defined as

X RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ð1Þ2 þ X ð2Þ2 þ � � � þ X ðnÞ2

n

s
ð5Þ

When the two forcing frequencies are close, beat phe-
nomenon appears in the response. Therefore short period
Ts = 2p/(x1 + x2) and long period Tl = 2p/(x1 � x2) are
used to choose suitable time step Tstep and time span Tspan.
Fig. 2 shows how the root mean square of the response
changes with the variations of the time step and span.



0 2 4 6 8 10
2.8

3

3.2

3.4

3.6

3.8

4

4.2 x 10-5

times

X
rm

s(m
)

Ts/Tstep
Tspan/Tl

Fig. 2. Root mean square of the response.
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From Fig. 2, the root mean square of the response
approaches a constant when the time step is short enough
or the time span is long enough. So it can be used to
measure the vibration level. On the other hand, when time
span is integer times of long period, the small time span can
make the root mean square of the response approach a
constant. And further when Ts/Tstep P 2 and Tspan/
Tl P 5, the truncation errors are less than 0.4% and
2.7%, respectively.

3. Comparison of a single DVA, a single SSA and two DVAs

The comparison described below is intended to demon-
strate the level of vibration control achieved by a single
DVA, a single SSA and dual DVAs. Fig. 3 depicts a single
DVA, a single SSA and dual DVAs, each mounted on iden-
tical primary systems which have the same parameters as
model in Fig. 1. xa, xssa, x1, x2 are the displacement of
the single DVA, single SSA and dual DVAs, respectively;
Ma, Mssa, M1, M2 are the corresponding mass; Ka, Kssa,
K1, K2 are the corresponding stiffness; Ca, Cssa, C1, C2
Fig. 3. Single DVA, SSA and dual DVAs
are the corresponding damping. It is assumed that identical
forces with two harmonic components are applied to the
primary mass of each system.

3.1. Equations of motion

Following the work of Cunefare et al. [20], the dynami-
cal systems described above may all be cast in terms of a
state-space representation as

_X ðtÞ ¼ Aon-lineX ðtÞ þ BuðtÞ ð6Þ
where Aon-line is the only term that depends upon the stiff-
ness state of the system. In Eq. (6),

X ðtÞ ¼
qðtÞ
_qðtÞ

� �
ð7Þ

is the state-vector. q(t) is [x,xa] 0 for single DVA, [x,xssa] 0

for SSA and [x,x1,x2] 0 for two DVAs where the superscript
sign ( 0) denotes transpose of matrix.

The coefficient matrices of two system equations with a
single DVA and SSA have the same form as

Aon-line ¼

0 0 1 0

0 0 0 1

� KpþK
Mp

K
Mp

� CpþC
Mp

C
Mp

K
M � K

M
C
M � C

M

2
66664

3
77775; B ¼

0

0
1

Mp

0

2
6664

3
7775
ð8Þ

where K, M are the stiffness and mass of the single DVA
and SSA, respectively. For a two-state SSA, the switching
control law developed by Cunefare et al. is used to adjust
its stiffness [20]. The switching principle is

Knext
ssa ¼

Kssa1 if _xð _xssa � _xÞ > 0

Kssa2 if _xð _xssa � _xÞ < 0

Kssa if _xð _xssa � _xÞ ¼ 0

8><
>: ð9Þ

where Knext
ssa is the next value of the SSA stiffness Kssa.

The coefficient matrices of the system with dual DVAs
can be written as
mounted on identical primary systems.
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Aon-line ¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� KpþK1þK2

Mp

K1

Mp

K2

Mp
� CpþC1þC2

Mp

C1

Mp

C2
Mp

K1

M1
� K1

M1
0 C1

M1
� C1

M1
0

K2

M2
0 � K2

M2

C2

M2
0 � C2

M2

2
6666666664

3
7777777775
;

B ¼

0

0

0
1

Mp

0

0

2
666666664

3
777777775

ð10Þ

where K1, K2 are the stiffness of dual DVAs; C1, C2 are the
damping of dual DVAs.

The iterative solution of Eq. (6) for the system response
is

X ðk þ 1Þ ¼ AdiX ðkÞ þ BdiuðkÞ ð11Þ
and

Adi ¼ eAon-lineT step ; Bdi ¼ A�1
on-lineðAdi � IÞB ð12Þ

where Tstep is the time step of the discrete simulation.
As a basis for the three methods, the DVA mass, SSA

mass and the total mass of dual DVAs are selected to be
equal and each is 10% of the primary system mass. The
excitation and resonance frequencies are nondimensional-
ized by the natural frequency of the primary system,
x0 = (Kp/Mp)1/2. Both the single DVA and SSA are pre-
sumed to have damping elements such that their damping
ratio at the frequency x0 is 5%. The damping elements of
dual DVAs are identical and their damping is half of the
single DVA.

Similar to the work [20], the performances of a single
DVA, SSA and dual DVAs optimized for the identical
set of exciting frequencies x1 and x2 are compared.
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Fig. 4. Performance comparison of a single DVA, SSA and dual DVAs.
Direct-search optimization method is used to determine
the optimal DVA, SSA and dual DVAs stiffness for each
forcing frequencies x1 and x2. In direct-search optimiza-
tion, all values of tuning frequency within a defined design
space are tested through a time simulation for each test.
The optimization tuning frequency is defined as the one
that yields the minimum average kinetic energy of the pri-
mary mass at the end of the simulation. For the single
DVA, this optimization process requires a search over only
one tuning frequency; the SSA and two DVAs require a
search over combinations of pairs of tuning frequencies.
According to the optimization tuning frequency, the
DVA, SSA and two DVAs stiffness Ka, Kssa1, Kssa2, K1

and K2 are determined.

3.2. Comparison of vibration reduction performance

During the simulation, the forcing frequency x1/x0 is
fixed and x2/x0 varies between ratios of 0.9–1.1, in steps
of 0.02. The design space for the optimization tuning fre-
quency is defined as spanning 0.6–1.2 in steps of 0.04.
The comparison of three methods is shown in Fig. 4. The
smaller average kinetic energy means the lower vibration
level of the primary mass, that is, the corresponding absor-
ber has better performance. When the spacing of the two
forcing frequencies is small, the performances of three
methods are almost identical. Both SSA and dual DVAs
have better performances than single DVA as the spacing
of the two forcing frequencies increases. In addition, dual
DVAs almost have the same performance as the SSA for
all combinations of x1 and x2.

3.3. Comparison of tuning frequency

Fig. 5 indicates the ratio between the upper and lower
tuning frequencies of the SSA and dual DVAs in order to
achieve the performance shown in Fig. 4. The ratio of
two tuning frequencies of SSA fluctuates more acutely
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Fig. 5. Ratio of two tuning frequencies in SSA and dual DVAs.
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and is much larger than that of dual DVAs. The larger fluc-
tuation indicates that the tuning frequencies of SSA are
more sensitive to the forcing frequencies. For an adaptive
absorber tuned by adjusting stiffness, the larger ratio means
that the properties of smart material used by absorber
should be able to vary in broader range. Therefore, the
method using dual DVAs can be implemented more conve-
niently. However, the convenience is at the cost of the
increase of number of DVA. On the other hand, multiple
absorbers are used at the same time in many applications
[1,22]. For these applications, the number of DVA can
not become the limitation of dual DVAs.

3.4. Tuning-to-forcing frequency ratio of dual DVAs

Fig. 6 shows the ratio between the two tuning frequen-
cies of dual DVAs and the two forcing frequencies. xn1

and xn2 are the lower and upper tuning frequencies, respec-
tively. It is shown that both ratios are nearly equal to unity.
This means that each of two DVAs, respectively suppresses
the vibration excited by one of the two forcing frequencies
as traditional absorbers for single harmonic excitation. In
addition, the ratios fluctuate near unity specially when
the dimensionless frequency is unity. One of its reasons is
that the optimization process is based on discrete frequen-
cies and the tuning frequencies may be optimal or sub-opti-
mal. Moreover for a single harmonic excitation, the
performance of absorber depends on the spacing between
its natural frequency and excitation frequency but whether
the natural frequency of absorber is larger or less than the
excitation frequency, which can lead to the fluctuating in
Figs. 5 and 6.

On the other hand, from Eqs. (8)–(12), the coefficient
matrices of Eq. (12) for a SSA vary at every switching
point, that is, the optimization process of the tuning fre-
quency of SSA involves a lot of inverse matrix computa-
tions that are time-consuming. However, the coefficient
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Fig. 6. Tuning-to-forcing frequency ratios of dual DVAs.
matrices of Eq. (12) for dual DVAs are constant for every
forcing frequency combination.

4. Frequency-tuning method

In the above analysis, the optimization process of dual
DVAs based on the minimum average kinetic energy of pri-
mary system needs to test all combinations of two forcing
frequencies. If the excitation has more components, the
optimization process still needs a great deal of time. On
the other hand, when the primary system is a continuous
structure, the measurement of its average kinetic energy
requires a lot of sensors distributed on the primary system.
So it is valuable to find a simpler frequency-tuning method.
Traditional absorber is generally used to suppress the
vibration excited by single harmonic force. The absorber
should be designed such that its natural frequency is tuned
to the excitation frequency.

For the excitation with multiple frequencies, according
to Fig. 6, the optimal tuning frequencies are almost equal
to the forcing frequencies. Therefore, one–one method is
proposed to tune the DVAs to suppress the vibration under
multi-frequency harmonic excitation. The method requires
that the number of the tuning frequencies of absorbers
equals that of forcing frequency components and their rela-
tion is one–one, that is, each of the tuning frequencies is
equally matched to one of the forcing frequencies. If every
absorber has only a tuning frequency, the proposed
method needs the same number of absorbers as forcing fre-
quency components. The method can be considered as the
extension for the frequency-tuning method of traditional
absorber used to suppress the vibration excited by single
harmonic force.

To assess the relative performance of the optimized dual
DVAs depicted in previous part and the dual DVAs tuned
by one–one method, the logarithm of the ratio of average
kinetic energies (AKE) is used as a figure

b ¼ 10 lg
AKE of the optimization method

AKE of the one–one method

� �
ð13Þ

When Eq. (13) yields negative value, the optimized dual
DVAs outperformed the dual DVAs tuned by one–one
method, i.e., the former AKE is lower than the latter.

4.1. Effect of frequency step on the relative performance

During the simulation, the forcing frequency x1/x0 is
fixed and x2/x0 varies between ratios of 0.9–1.1, in steps
of 0.02. The design space for the optimization tuning fre-
quency is defined as spanning 0.6–1.2 with three kinds of
frequency steps 0.04, 0.02 and 0.01. The damping ratio of
the DVAs at the frequency x0 is 5%. Fig. 7 compares the
performances of the optimized two DVAs and the two
DVAs tuned by one–one method. The results show that
when the frequency step is larger, the optimization method
has lower performance than one–one method. As the fre-
quency step is shortened, the two methods almost have
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the same capability. Therefore, in order to get good perfor-
mance, the optimization method should have short enough
frequency step.

4.2. Effect of damping ratio on the relative performance

Fig. 8 presents the effect of damping ratio of absorbers
on the relative performance between the optimization and
one–one method. The frequency step for the optimization
tuning frequency in Fig. 8 is fixed on 0.01. The optimiza-
tion method outperforms slightly one–one method when
the spacing of the two forcing frequencies is smaller. On
the whole, the performances of the two methods only have
a little difference and the difference decreases as the damp-
ing ratio reduces. It is similar with the result of traditional
absorber used to suppress the vibration excited by single
harmonic force. That is, the smaller the damping ratio is,
the closer the optimal tuning frequency is to the forcing
frequency.
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From the above analysis, the one–one method almost
has identical performance with the optimization method
and it does not need time-consuming optimization process.
In addition, the method can be easily expanded to the case
of the excitation including more frequency components.
Moreover, if the DVA can adjust its natural frequency
adaptively, the method is also suitable for multiple time-
varying frequencies harmonic excitation. Therefore, if the
requirement for the vibration reduction effect is not strict,
the one–one method is a more convenient and practical
method for engineering applications.

5. Conclusions

The present research explores the application of DVA to
the vibration control of multiple frequency harmonic exci-
tations. The response properties of a single-degree-of-free-
dom system under dual harmonic excitation are analyzed
to provide some principles for the choice of time span
and step in the simulations. The performances of a single
DVA, a single SSA and dual DVAs are compared. The
results indicate that dual DVAs almost have the same per-
formance as the SSA and they both have better perfor-
mances than single DVA. In addition, two DVAs
compared with the SSA have some advantages such as
lower ratio of tuning frequencies, more rapid optimization
process and lower requirement for the anti-fatigue property
of the material.

Furthermore, the performances of different frequency-
tuning methods for excitation with multiple frequency
components are investigated. The results show that the
one–one method almost has identical performance with
the optimization method and it does not need time-con-
suming optimization process. In addition, the method can
be easily expanded to the case of the excitation including
more frequency components. However, the method
requires that the number of the tuning frequencies of
absorbers equals that of forcing frequency components.

On the whole, if the material used for variable stiffness
element has high enough performances, the SSA is a good
choice for dual harmonic excitation. Otherwise, if the exci-
tation has three or more frequency components and the
requirement for the number of absorbers is flexible, the
one–one method is a more convenient and practical alter-
native for engineering applications.
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